

ISSCC 2017

SESSION 17 TX and RX Building Blocks

Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS:

A 220-to-320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure

Cheng Wang and Ruonan Han Massachusetts Institute of Technology Cambridge, MA, USA

Outline

- Background
- Dual-Frequency-Comb Spectroscopy
- Architecture and Circuit Design
- Measurement Results
- Conclusions

mm-Wave/THz Rotational Spectroscopy

J - quantum number

- Rotation of polar molecules leads to absorption spectrum
 - Maximum absorption in mmW/lower-THz range
 - Sub-MHz Doppler-limited linewidth \rightarrow high selectivity

Portable Molecular Sensor: Applications

 Human breath analyzer for biomedical diagnosis

[tabletopwhale.com]

- Environment monitoring for toxic gas leakage
 - Sensor network
 - UAV platform

[www.dji.com]

Challenges of Chip-Scale Spectrometer

[C. F. Neese, IEEE Sensors Journal, 2012]

Molecule	Frequency (GHz)	Toxic?	Flammable ?	
Carbon Monoxide (CO)	230.538001	Y	Y	
Sulfur Dioxide (SO ₂)	251.199668			
Hydrogen Cyanide (HCN)	265.886441		Y	
Hydrogen Sulfide (H ₂ S)	300.511959		Y	
Nitric Oxide (NO)	250.436966	Y		
Nitrogen Dioxide (NO ₂)	292.987169	Y		
Nitric Acid (HNO ₃)	256.657731	Y		
Ammonia (NH3)	208.145904	Y		
Carbonyl Sulfide (OCS)	231.060989	Y	Y	
Ethylene Oxide (C ₂ H ₄ O)	263.292515	Y		
Acrolein (C ₃ H ₄ O)	267.279359	Y		
Methyl Mercaptan (CH₃SH)	227.564672	Y		
Methyl Isocyanate (CH₃NCO)	269.788609	Y		
Methyl Chloride (CH ₃ Cl)	239.187523	Y	Y	
Methanol (CH ₃ OH)	250.507156	Y	Y	
Acetone (CH ₃ COCH ₃)	259.6184	Y	Y	
Acrylonitrile (C ₂ H ₃ CN)	265.935603	Y	Y	

[Source: HITRAN.org]

- High selectivity
 - Wideband(100GHz), high resolution(10kHz) spectrometer
- High sensitivity, fast scanning
 - High radiated power (below saturation), low noise detection
- High energy efficiency

Outline

- Background
- Dual-Frequency-Comb Spectroscopy
- Architecture and Circuit Design
- Measurement Results
- Conclusions

Dual-Frequency-Comb Spectroscopy

• Single frequency sweep (e.g. ~3 hours for 100GHz bandwidth, τ_{int} =1ms)

Dual-frequency-comb spectroscopy

 Simultaneous scanning using 20 comb lines (8 minutes for 100GHz bandwidth, τ_{int}=1ms)

Energy Efficiency Improvement

- Dual frequency combs (DFC) scheme breaks the conventional efficiency-bandwidth tradeoff using parallelism
- Linear scalability between bandwidth and energy consumption

Outline

- Background
- Dual-Frequency-Comb Spectroscopy
- Architecture and Circuit Design
- Measurement Results
- Conclusions

Architecture of A 220-to-320GHz Comb

- Tunable transceiver: 10 active molecular probes (AMP)
 - Seamless coverage of 100GHz bandwidth
 - Simultaneous transmit and receive $\rightarrow \sim 2x$ higher efficiency

Distributed Comb-Spectral Radiation

- On-chip backside radiation through 10 radiators
 - Improved antenna efficiency by narrowband operation
- High-resistivity hemispheric silicon lens is used
 - Lower sensitivity to the radiator offset from the center (compared to hyper-hemispheric lens)
 - No additional beam collimation

Active Molecular Probe (AMP)

Multi-functional module simultaneously performs

- Highly-efficient frequency doubling
- Low-noise heterodyne sub-harmonic down mixing
- Efficient antenna for input/output radiation waves

AMP TX Mode: Frequency Doubling

- Conditions for high conversion efficiency
 - Maximum device power gain at fundamental frequency (f_0)
 - Minimum loss at $2f_0$ (e.g. harmonic feedback to the lossy gates)

- Instantaneous signal radiation at $2f_0$

Maximum Device Power Gain G_{max}

Upper limit of matched power gain G_{max} depends on ٠ the unilateral gain U

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-

320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure

Conventional YZ Embedding for *Gmax*

[R. Spence, Linear Active Networks 1968]

Issues of YZ embedding with lumped elements

- Loss from DC feed to bypass source current
- Loss from parasitic resistor associated with the source
- Impractical large inductor for Y element due to distributed effect in high frequency

Dual-transmission-line (DTL) Feedback

Equations for feedback parameter calculation:

- Adopt distributed feedback elements
- Ground the source of transistor
- Achieve G_{max} accurately

© 2017 IEEE International Solid-State Circuits Conference

DTL Feedback Based on Slot Line @f₀

Loss Minimization and Radiation @2f₀

Simulation Results for Doubler at 275GHz

- 65nm bulk CMOS
- NMOS W/L=24µm/60nm
- Output power: 1.6mW
- Doubler efficiency: 43%
- Antenna efficiency: 45%

Antenna directivity

AMP RX Mode: Heterodyne Mixing

Electrical field
Current

- Mixer LO signal is the same as the doubler input signal @fo
- Further noise reduction: zero drain bias current
 → varistor mode mixing with reduced channel noise

Slot Balun with Orthogonal Mode Filtering

Slot Balun with Orthogonal Mode Filtering

- Nearly perfect single-ended signal to differential signal conversion without errors
- Minimum insertion loss: 0.9 dB
- -10dB return loss bandwidth: 30%

Up/Down-Conversion Mixer

SSB mixers configured for up/down conversion chains

Up/Down-Conversion Mixer

- IF phase configuration → up or down sideband selection
- Low conversion loss: 2.3 dB
- Rejection of image, LO and inter-modulation signals: >30dB

Outline

- Background
- Dual-Frequency-Comb Spectroscopy
- Architecture and Circuit Design
- Measurement Results
- Conclusions

Chip Micrograph and Packaging

- TSMC 65nm bulk CMOS process
- Chip area: 2mm × 3mm
- DC power consumption: 1.7W

Measurement Setup of TX Mode

 For power measurement, only one AMP is turned on at each time

Measurement Results of TX Mode

Total radiated power of 10 comb lines: 5.2mW

Measurement Results of TX Mode

 Average measured phase noise for 10 comb lines at 1MHz offset: -102dBc/Hz

Measurement Setup of RX Mode

NF = IF noise floor (dBm/Hz) – (-174 (dBm/Hz)) – CG (dB)

Measurement Results of RX Mode

Measured SSB noise figure: 14.6~19.5dB

Performance Comparison Table

Ref.	Technology (f _{max})	Topology	Frequency (GHz)	BW (GHz)	P _{radiated} (mW)	Phase Noise ¹ (dBc/Hz)	Noise Figure (dB)	P _{DC} (W)
This work	65nm CMOS (250GHz)	Comb (Tx/Rx)	220~320	100	5.2	-102	14.6~19.5	1.7
TST2016	0.13µm SiGe (500GHz)	Tx+Rx	245	14	4.0	-85	18	1.5+0.6 (Tx+Rx)
JSSC2014	32nm CMOS (320GHz)	Tx+Rx	210	14	0.7 ²	-81	11~12 ³	0.24+0.086 (Tx+Rx)
VLSI2016	65nm CMOS (N/A)	Тх	208~255	47	0.14	-80	N/A	1.4
JSSC2015	0.13µm SiGe (280GHz)	Тх	317	N/A	3.3	-79	N/A	0.61
ISSCC2016	65nm CMOS (N/A)	Rx	210~305	95	N/A	N/A	18.4~23.5 ⁵ (NF _{ISO} =13.9~19)	N/A

1. 1 MHz frequency offset.

- 2. The P_{radiated} is estimated from the PA output power of 2.9 mW, and the antenna loss of 6 dB.
- 3. The NF of low noise amplifier in the receiver, excluding on-chip antenna loss.
- 4. The reported power in [3] is EIRP, not the total radiated power.

5. The overall NF (18.4~23.5 dB) =NF_{ISO}(13.9~19 dB, Isotropic Noise Figure)- (Antenna Loss (~4 dB) + Antenna Gain (-1~2 dBi)).

Spectroscopy Demonstration Setup

- Wavelength modulation (WM) is applied for reduced impacts due to standing-wave formation
 - $\Delta f=240$ kHz, $f_m=50$ kHz, $f_{IF}=950$ MHz

Spectrum of Acetonitrile (CH₃CN)

[JPL Molecular Spectroscopy, spec.jpl.nasa.gov.]

17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure

Frequency (GHz)

Spectrometer Miniaturization

54dB SNR has been achieved 1st order derivative, SNR=54dB with reduced gas cell size Compact 3cm-long gas cell Amplitude (mV) k 0 t Sample: carbonyl sulfide (OCS), 1.21×10⁻²¹ cm integrated line intensity (JPL) at 279.685GHz Integration time: 100ms 279.682 279.684 279.686 279.688 Frequency (GHz) Comb B 2nd order derivative, SNR=44dB 2 Amplitude (mV) Comb A 3cm-long gas cell 279.682 279.684 279.686 279.688 Frequency (GHz)

Outline

- Background
- Dual-Frequency-Comb Spectroscopy
- Architecture and Circuit Design
- Measurement Results
- Conclusions

Conclusions

- Architecture level: <u>Dual-frequency-comb spectroscopy</u> with >2*N*× (*N*=10) faster frequency scanning and lower total energy consumption
 - Simultaneous bilateral transmit/receive
- Circuit level: multi-functional <u>active molecule probe (AMP)</u>, performing frequency doubler, sub-harmonic mixer and onchip antenna simultaneously
 - Proposed dual-transmission-line (DTL) feedback accurately achieves G_{max}
- Prototype: <u>220-to-320GHz comb spectrometer</u> with state-ofthe-art 5.2mW radiated power and 14.6-to-19.5dB NF
 - Spectroscopy demonstration with 3-cm gas cell and a SNR of 54dB

Acknowledgement

- MIT Center for Integrated Circuits & Systems
- TSMC University Shuttle Program
- Dr. Richard Temkin (MIT Physics), Prof. Tomás Palacios (MIT EECS), Prof. Ehsan Afshari (University of Michigan) and Prof. Anantha Chandrakasan (MIT EECS) for the support of testing instruments
- Dr. Stephen Coy, Prof. Keith Nelson, Prof. Robert Field (MIT Chemistry), Tingting Shi (MIT and Fudan University) and Prof. John S. Muenter (University of Rochester) for technical discussions and assistance