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mm-Wave/THz Rotational Spectroscopy

• Rotation of polar molecules leads to absorption spectrum
‒ Maximum absorption in mmW/lower-THz range
‒ Sub-MHz Doppler-limited linewidth  high selectivity
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Portable Molecular Sensor: Applications

[tabletopwhale.com]

• Human breath analyzer for 
biomedical diagnosis

• Environment monitoring 
for toxic gas leakage

‒ Sensor network
‒ UAV platform 

[www.dji.com]
75% N2

13% O2

6% H2O 5% CO2

• 1% volatile organic compounds 
• 3500 chemical species
• Concentration: ppm-to-ppt level 
• Bio-makers for diseases or 

metabolic disorders
     (e.g. acetone  glucose 
Type 1 diabetes)
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Challenges of Chip-Scale Spectrometer

Molecule Frequency 
(GHz) Toxic? Flammable

?
Carbon Monoxide (CO) 230.538001 Y Y

Sulfur Dioxide (SO2) 251.199668
Hydrogen Cyanide (HCN) 265.886441 Y
Hydrogen Sulfide (H2S) 300.511959 Y

Nitric Oxide (NO) 250.436966 Y
Nitrogen Dioxide (NO2) 292.987169 Y

Nitric Acid (HNO3) 256.657731 Y
Ammonia (NH3) 208.145904 Y

Carbonyl Sulfide (OCS) 231.060989 Y Y
Ethylene Oxide (C2H4O) 263.292515 Y

Acrolein (C3H4O) 267.279359 Y
Methyl Mercaptan 

(CH3SH) 227.564672 Y

Methyl Isocyanate 
(CH3NCO) 269.788609 Y

Methyl Chloride (CH3Cl) 239.187523 Y Y
Methanol (CH3OH) 250.507156 Y Y

Acetone (CH3COCH3) 259.6184 Y Y
Acrylonitrile (C2H3CN) 265.935603 Y Y

[Source: HITRAN.org]• High selectivity
– Wideband(100GHz), high resolution(10kHz) spectrometer

• High sensitivity, fast scanning
– High radiated power (below saturation), low noise detection

• High energy efficiency

[C. F. Neese, IEEE Sensors Journal, 2012]

periodic

Spectrum: 210-270GHz
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Dual-Frequency-Comb Spectroscopy

Conventional single-tone spectroscopy

Dual-frequency-comb spectroscopy

• Simultaneous scanning using 20 comb lines 
(8 minutes for 100GHz bandwidth, τint=1ms)

• Single frequency sweep (e.g. ~3 hours for 100GHz bandwidth, τint=1ms)
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Energy Efficiency Improvement

• Dual frequency combs (DFC) scheme breaks the conventional 
efficiency-bandwidth tradeoff using parallelism

• Linear scalability between bandwidth and energy consumption

Radiated power of silicon-
based sources above 200GHz

Total energy consumption for 
full-band scanning
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Architecture of A 220-to-320GHz Comb

• Tunable transceiver: 10 active molecular probes (AMP)
‒ Seamless coverage of 100GHz bandwidth
‒ Simultaneous transmit and receive  ~2x higher efficiency
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Distributed Comb-Spectral Radiation

• On-chip backside radiation through 10 radiators
‒ Improved antenna efficiency by narrowband operation

• High-resistivity hemispheric silicon lens is used
‒ Lower sensitivity to the radiator offset from the center

(compared to hyper-hemispheric lens)
‒ No additional beam collimation



17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-
320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure

© 2017 IEEE 
International Solid-State Circuits Conference 12 of 38

Active Molecular Probe (AMP)

• Multi-functional module simultaneously performs  
‒ Highly-efficient frequency doubling
‒ Low-noise heterodyne sub-harmonic down mixing
‒ Efficient antenna for input/output radiation waves
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AMP TX Mode: Frequency Doubling

• Conditions for high conversion efficiency
‒ Maximum device power gain at fundamental frequency (f0)
‒ Minimum loss at 2f0 (e.g. harmonic feedback to the lossy gates)
‒ Instantaneous signal radiation at 2f0
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Maximum Device Power Gain Gmax

• Upper limit of matched power gain Gmax depends on 
the unilateral gain U

Gms/Gma Unilateral gain U

Gmax, ~4U

fmax

U = 4
Gmax = 3.5U

Simulation using 65nm bulk 
CMOS process

ܻ ൌ ଵܻଵ ଵܻଶଶܻଵ ଶܻଶܻ ൌ ݃  ݆ · ܾ
[R. Spence, Linear Active Networks 1968]

[O. Momeni, ISSCC 2013]
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Conventional YZ Embedding for Gmax

[R. Spence, Linear Active Networks 1968]

• Issues of YZ embedding with lumped elements
‒ Loss from DC feed to bypass source current
‒ Loss from parasitic resistor associated with the source 
‒ Impractical large inductor for Y element due to distributed 

effect in high frequency

Y element for 
shunt feedback

Z element for 
series feedback

IN

OUT

DC 
feed

Rsb

Csb

N+ N+

P type substrate

Gate
Source DrainBulk

Z element

Rsb

Y elementDC 
feed

IN OUT

Csb

P+

Equivalent circuit Transistor structure



17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-
320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure

© 2017 IEEE 
International Solid-State Circuits Conference 16 of 38

Dual-transmission-line (DTL) Feedback

Gmax, K=1

Original power gain

5 dB gain 
boost

fmax

where 

• Adopt distributed feedback elements
• Ground the source of transistor
• Achieve Gmax accurately

Equations for feedback 
parameter calculation:

Simulation using 65nm CMOS process
TL1 (Z1,θ1)

Slot2 (Z2,θ2)

IN
OUT
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DTL Feedback Based on Slot Line @f0

E-field distribution @ f0Simulated stability factor, K

Feedback through Slot 2

Electrical field Current
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Loss Minimization and Radiation @2f0

E-field distribution @ 2f0Folded-slot antenna

Harmonic signal isolation

Electrical field Current
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Simulation Results for Doubler at 275GHz

• 65nm bulk CMOS
• NMOS W/L=24μm/60nm
• Output power: 1.6mW
• Doubler efficiency: 43%
• Antenna efficiency: 45%

Doubler efficiency η (%) Antenna directivity
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AMP RX Mode: Heterodyne Mixing

• Mixer LO signal is the same as the doubler input signal @f0
• Further noise reduction: zero drain bias current 
 varistor mode mixing with reduced channel noise

Simulated SSB noise figure

Electrical field Current



17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-
320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure

© 2017 IEEE 
International Solid-State Circuits Conference 21 of 38

Slot Balun with Orthogonal Mode Filtering

• Amplitude and phase imbalance 
in conventional baluns causes

‒ Lower doubler efficiency
‒ Higher LO signal radiation at f0

• Proposed slot balun
‒ Orthogonal mode filtering
‒ Symmetric output coupling

Active Molecular Probe (AMP)

Differential mode 
(support)

Common mode 
(reject)

In

Out

In

Electrical field

Open Open
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Slot Balun with Orthogonal Mode Filtering

Simulated S-parameterSimulated amp. and phase error

• Nearly perfect single-ended signal to differential 
signal conversion without errors

• Minimum insertion loss: 0.9 dB
• -10dB return loss bandwidth: 30%
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Up/Down-Conversion Mixer

• SSB mixers configured for up/down conversion chains

VGG VGG

Lange Coupler

f0 , 180◦ 

f0 , 0◦ 

f0 , 270◦ 

f0 , 90◦ 

VB 

RF: f0+5GHz 

VDD

VA

VC 

VD 

Static Frequency 
Divider

LO: f0

fD: 10GHz 

VA VB VC VD

5GHz IF IQ signals

0◦ 

90◦ 

270◦ 

180◦ 

fD: 10GHz 

fD/2: 5GHz

DQ

Q CLK

DQ

QCLK
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Up/Down-Conversion Mixer

• IF phase configuration  up or down sideband selection
• Low conversion loss:  2.3 dB 
• Rejection of image, LO and inter-modulation signals: >30dB

f0

31dB

30.8dB
f0

Phase(VA,VB,VC,VD)
=(0°,180°,90°,270°)

Down sideband conv. 

Phase(VA,VB,VC,VD)
=(0°,180°,270°,90°)

Up sideband conv. 
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Chip Micrograph and Packaging

• TSMC 65nm bulk CMOS process
• Chip area: 2mm×3mm
• DC power consumption: 1.7W

Chip bonded on PCB 
with hemispheric 

silicon lens



17.6: Rapid and Energy-Efficient Molecular Sensing Using Dual mm-Wave Combs in 65nm CMOS: A 220-to-
320GHz Spectrometer with 5.2mW Radiated Power and 14.6-to-19.5dB Noise Figure

© 2017 IEEE 
International Solid-State Circuits Conference 27 of 38

Measurement Setup of TX Mode

Signal Source (13.7-20GHz)

Spectrum 
Analyzer

VDI WR-3.4 
EHM

Diplexer

WR-3.4 Horn 
Antenna

Spectrum/Antenna Pattern Measurement

φ
θ

Sensor 
HeadmW

WR-3.4-10 
Taper

Erikson PM4 
Power Meter

Power Measurement

WR-10 
Waveguide

PCB

IF

LO

LNA

Loss
0.7dB

Distance, d = 10cm

fref

IF=280MHz

Signal Source (fDigital=10GHz)

Signal Source 
(fref=45-46.67GHz)

fdigital

• For power measurement, only one AMP is turned on 
at each time

Power measurement 
using VDI Erickson 
PM-4 power meter
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Measurement Results of TX Mode

Antenna pattern of a comb 
line at 265GHz

Equivalent isotropic 
radiated power (EIRP)

• Total radiated power of 10 comb lines: 5.2mW
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Measurement Results of TX Mode

Phase noise of 10 comb 
lines

• Average measured phase noise for 10 comb lines at 
1MHz offset: -102dBc/Hz

Span=10kHz
RBW=10Hz

Spectrum of a comb line 
at 265GHz
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Measurement Setup of RX Mode
Signal Source

Horn Antenna

φ
θ

PCB

Distance = 15 cm

Signal Source
(fDigital=10GHz)

Signal Source 
(fref=45-46.67GHz)

Spectrum 
Analyzer

LNA IF=280MHz

IFiFrequency 
Extender

Output: 220-320GHz

NF = IF noise floor (dBm/Hz) – (-174 (dBm/Hz)) – CG (dB)

Single-sideband noise figure (antenna loss incorporated)

Single-sideband conversion gain

CG =
IF output power

Power received by RX antenna aperture
= IF output power (dBm) – (TX power (dBm) +TX antenna gain (dB) 

– Path loss (dB) + RX antenna directivity (dB))
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Measurement Results of RX Mode

• Measured SSB noise figure: 14.6~19.5dB

Single-sideband conversion gainSingle-sideband noise figure
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1. 1 MHz frequency offset.
2. The Pradiated is estimated from the PA output power of 2.9 mW, and the antenna loss of 6 dB.
3. The NF of low noise amplifier in the receiver, excluding on-chip antenna loss.
4. The reported power in [3] is EIRP, not the total radiated power.
5. The overall NF (18.4~23.5 dB) =NFISO(13.9~19 dB, Isotropic Noise Figure)- (Antenna Loss (~4 dB) + Antenna 
Gain (-1~2 dBi)) .

Ref. Frequency
(GHz)

BW
(GHz)

Pradiated
(mW)

Phase Noise1

(dBc/Hz)
Noise Figure

(dB)
This work

Topology
Comb

(Tx/Rx) 220~320 100 5.2 -102 14.6~19.5

Tx+Rx 245 14 4.0 -85 18

Rx 210~305 95 N/A N/A 18.4~23.55

(NFISO=13.9~19)

Tx 317 N/A 3.3 -79 N/A

208~255 47Tx 0.14 -80 N/A

210 14 0.72 -81 11~123Tx+Rx

PDC (W)

1.7
1.5+0.6
(Tx+Rx)

0.24+0.086
(Tx+Rx)

1.4

N/A

0.61

Technology
(fmax)

65nm CMOS
(250GHz)

0.13μm SiGe
(500GHz)

65nm CMOS
(N/A)

0.13μm SiGe
(280GHz)

32nm CMOS
(320GHz)

65nm CMOS
(N/A)

TST2016

ISSCC2016

JSSC2015

VLSI2016

JSSC2014

Performance Comparison Table
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Spectroscopy Demonstration Setup

Spectroscopy setup at 
MIT Terahertz Integrated 

Electronics Lab

• Wavelength modulation (WM) is applied for reduced 
impacts due to standing-wave formation
‒ ∆f=240kHz, fm=50kHz, fIF=950MHz
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Spectrum of Acetonitrile (CH3CN)
Spectral line w/o WM

Spectral line with WM

Measured spectrum of CH3CN

• Measurement matches the JPL 
molecular database

• Spectral linewidth of 380kHz is 
obtained
‒ Absolute specificity (Q=7×105)

[JPL Molecular Spectroscopy, spec.jpl.nasa.gov.]
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Spectrometer Miniaturization
1st order derivative, SNR=54dB

2nd order derivative, SNR=44dB

3cm-long gas cell 

• 54dB SNR has been achieved 
with reduced gas cell size
‒ Compact 3cm-long gas cell
‒ Sample: carbonyl sulfide (OCS), 

1.21×10-21 cm integrated line 
intensity (JPL) at 279.685GHz

‒ Integration time: 100ms

Comb A

Comb B
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Conclusions

• Architecture level: Dual-frequency-comb spectroscopy with
>2N× (N=10) faster frequency scanning and lower total
energy consumption

− Simultaneous bilateral transmit/receive

• Circuit level: multi-functional active molecule probe (AMP),
performing frequency doubler, sub-harmonic mixer and on-
chip antenna simultaneously

− Proposed dual-transmission-line (DTL) feedback accurately
achieves Gmax

• Prototype: 220-to-320GHz comb spectrometer with state-of-
the-art 5.2mW radiated power and 14.6-to-19.5dB NF

− Spectroscopy demonstration with 3-cm gas cell and a SNR
of 54dB
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