

Large-Scale Terahertz Active Arrays in Silicon Using Highly-Versatile Electromagnetic Structures

(Invited Paper)

Cheng Wang, Zhi Hu, Guo Zhang, Jack Holloway and <u>Ruonan Han</u>

Dept. of Electrical Engineering and Computer Science Microsystem Technology Laboratories Massachusetts Institute of Technology

The Dawn of a New Terahertz Era

The Dawn of a New Terahertz Era

The Dawn of a New Terahertz Era

Recent Progress and New Challenges

Recent Progress and New Challenges

What are the <u>true</u> advantages of using silicon IC for THz hardware (besides low cost, baseband integration...)?

Large-Scale Terahertz Active Array

Outline

Background

- Homogeneous Array: 1-THz Radiation Source
 - Multi-Functional Mesh Structure
 - Chip Prototype in SiGe and Measurement Results
- Heterogeneous Array: 220-to-320GHz Frequency-Comb Spectrometer
 - High-Parallelism Architecture and THz Molecular Probing Module
 - Chip Prototype in CMOS and Measurement Results
 - Gas-Sensing Demonstration

Conclusion

Outline

- Background
- Homogeneous Array: 1-THz Radiation Source
 - Multi-Functional Mesh Structure
 - Chip Prototype in SiGe and Measurement Results
- Heterogeneous Array: 220-to-320GHz Frequency-Comb Spectrometer
 - High-Parallelism Architecture and THz Molecular Probing Module
 - Chip Prototype in CMOS and Measurement Results
 - Gas-Sensing Demonstration
- Conclusion

Beam Collimation in a Radiator Array

- Array of N coherent radiation sources enables:
 - Power combining from a large number of solid-state devices
 - Beam collimation through wave interference
 - The far-field radiation intensity increases by N²

Optimum Element Pitch: $\lambda/2$

Note: Calculations Based on a 10mm² Active Area

- If the $\lambda/2$ pitch is achieved:
 - >10/mm² radiators at 300 GHz can be built
 - D_{opt} is ~300μm (with ε_{r,eff}≈3)
- High effective isotropically radiated power (EIRP) may be maintained in the mid-THz range
 - Long transmission distance

Note: Calculations Based on a 10mm² Active Area

- ~100/mm² radiator density should be possible
 - Only 3° of beamwidth using 10-mm² chip area (~1000 coherent radiators)
- Large challenges
 - Signal generation at 1 THz
 - Available radiator area:
 100×100µm²
 - Highly scalable array architecture

Implementation Challenges

[[]R. Shmid, et al., IEEE Trans. Electron Devices 2015]

- Low device speed requires high-order harmonic generation
 - Optimal device conditions at all harmonic frequencies should be met
- The available area is too small for all these necessary functions

Enabling Technology: Versatile EM Designs

- A multi-functional electromagnetic structure around the transistors to simultaneously perform all the above tasks
 - Orthogonality of various EM wave modes
 - Multi-order standing-wave interference in the near field

Im

- 1-THz Array in 130-nm IHP SiGe BiCMOS
- 91 coherent radiator in 1-mm² area
- 0.1-mW total radiated power (EIRP: 20mW)

[Z. Hu and R. Han, *IEEE RFIC,* Jun. 2017 (Best Student Paper Award-2nd Place)]

Fundamental Oscillation at f_0 =250GHz

• At f_0 , each square slot line behaves as a pair of $\lambda/4$ standing-wave resonators

Optimal Fundamental Oscillation

Multi-Order Standing Wave Interference

• Unwanted harmonics (@ f_0 , $2f_0$, $3f_0$) are canceled by near-field interference

No Separate Filter is Needed

High-Density Radiation at 1 THz

- The 1-THz standing waves in all horizontal slots are in phase
 - Effective backside radiation ($\eta_{rad,sim}$ =63%)
 - On average, each oscillator (4x7 in total) drives 2 slot dipole antennas

91 Coherent Antennas (D≈λ/2)

Measurement Results: Frequency and Spectrum

- Oscillation frequency is determined by a sub-harmonic SBD mixer
 - Weak radiation leakage at f_0
 - Measured fundamental frequency: 252.5 to 254.1 GHz
 - $-4f_0$ output: 1.01 to 1.016 THz

Measurement Results: Radiated Power

- The radiated power is measured by a calibrated WR-1.0 zero-biased diode detector
 - Measured total radiated power: 80 μW
 - Measured beam directivity: 24 dBi (θ_{-3dB} =11°)
 - Measured EIRP: 20 mW

Measurement Results: Radiated Power

• The measured radiated power is further verified by a photo-acoustic (TK) power meter with large aperture

Comparison with the State-of-the-Arts in Silicon

- The achieved radiated power is 10x higher than prior siliconbased radiation sources in the mid-THz range
 - 100x higher EIRP than prior arts
- Even larger scale with higher power should be possible

Outline

- Background
- Homogeneous Array: 1-THz Radiation Source
 - Multi-Functional Mesh Structure
 - Chip Prototype in SiGe and Measurement Results
- Heterogeneous Array: 220-to-320GHz Frequency-Comb Spectrometer
 - High-Parallelism Architecture and THz Molecular Probing Module
 - Chip Prototype in CMOS and Measurement Results
 - Gas-Sensing Demonstration

Conclusion

Wave-Matter Interactions for Material Sensing

THz Spectrometer for Gas Sensing

[Source: HITRAN.org]			
Molecule	(GHz)	Toxic?	Flammable?
Carbon Monoxide (CO)	230.538001	Y	Y
Sulfur Dioxide (SO ₂)	251.199668		
Hydrogen Cyanide (HCN)	265.886441		Y
Hydrogen Sulfide (H ₂ S)	300.511959		Y
Nitric Oxide (NO)	250.436966	Y	
Nitrogen Dioxide (NO ₂)	292.987169	Y	
Nitric Acid (HNO₃)	256.657731	Y	
Ammonia (NH3)	208.145904	Y	
Carbonyl Sulfide (OCS)	231.060989	Y	Y
Ethylene Oxide (C ₂ H ₄ O)	263.292515	Y	
Acrolein (C ₃ H ₄ O)	267.279359	Y	
Methyl Mercaptan (CH ₃ SH)	227.564672	Y	
Methyl Isocyanate (CH₃NCO)	269.788609	Y	
Methyl Chloride (CH ₃ Cl)	239.187523	Y	Y
Methanol (CH ₃ OH)	250.507156	Y	Y
Acetone (CH ₃ COCH ₃)	259.6184	Y	Y
Acrylonitrile (C ₂ H ₃ CN)	265.935603	Y	Y

Wide Detection Range

Dual-THz-Comb Spectrometer

- Conventional single-tone sensing scheme
 - Bandwidth-efficiency tradeoff
 - Long scanning time (~3 hours for 100-GHz bandwidth)
- Our scheme using bilateral THz frequency combs
 - Each circuit block maintains peak performance in a narrow band
 - Simultaneous scanning using 20 comb lines
 (>20x increased speed)

220-to-320GHz Comb-Based CMOS Spectrometer

- 10 molecular-probing THz transceivers
 - Key technology: multi-function, energy-efficient electromagnetic structures
- Seamless coverage of the 220 to 320 GHz band with kHz resolution

Operation of the Transceiver Unit Core

Electrical Wave Distribution at f_{TX} (transmit mode) and f_{RX} (receive mode)

- Optimum device conditions created via a multi-functional EM structure
 - Slot 1: resonator at f_0 and antenna at $2f_0$
 - Slot 2: power recycle path at f_0 and leakage blocker at $2f_0$
- Simultaneous transmit/receive function

High-Parallelism Broadband Architecture

- The relaxed tunability requirement allows the introduction of device positive feedback and higher device gain
 - 43% simulated doubler conversion efficiency
- The total spectral scanning time is reduced by more than 20x, leading to high energy efficiency

CMOS Chip Prototype

Setup for Radiation Spectrum and Pattern Testing

- TSMC 65nm bulk CMOS process (f_{max}=250GHz)
 Chip area: 2×3mm²
- 10 transceivers (doubler+receiver+antenna), 9 mixers, 40 amplifiers, operating at 0.1~0.3 THz
 - DC power: 1.7 W

Experimental Results

Experimental Results

On-wafer measured with an assumed 50% radiation efficiency

- Total radiated power of the 10 comb lines: 5.2 mW
 - Highest in silicon
- Minimum detectable signal: 0.1 fW (-130 dBm) @ τ=1 ms

Spectroscopy Demonstration

- Low pressure is applied to eliminate the spectral broadening due to the inter-molecular collisions
- Wavelength modulation is used to reduce the impacts of the standing wave inside the gas chamber

Spectroscopy Results

10

10⁻¹

 10^{0}

Pressure (Pa)

10¹

Spectral linewidth is ~1MHz, leading to absolute specificity

Conclusions

- Using CMOS/BiCMOS device technologies not only enables "THz frontend + analog/digital baseband" integration, but may also directly enhance the THz-circuit performance
 - Homogeneous arrays: high-density coherent wave interference
 - \rightarrow Large total radiated power
 - Ultra-narrow beam generation
 - Heterogeneous arrays: high-parallelism EM spectral sensing
 - → Broadband coverage Optimal energy efficiency
- Key technology: versatile THz circuits with multi-functional structures

A unified design framework:

device, circuit, electromagnetism and architecture, all rolled into one

Acknowledgement

• Other Group Members:

M. Kim, M. Ibrahim, M. I. Khan, X. Yi, J. Mawdesley, J. Maclver, Z. Wang

• Collaborators:

B. Perkins (MIT Lincoln Lab), S. Coy (MIT), Q. Hu (MIT), M. Kaynak (IHP)

• Sponsors:

Singapore-MIT Alliance for Research and Technology

Large-Scale Terahertz Active Arrays in Silicon Using Highly-Versatile Electromagnetic Structures

Cheng Wang, Zhi Hu, Guo Zhang, Jack Holloway and <u>Ruonan Han</u>

Dept. of Electrical Engineering and Computer Science Microsystem Technology Laboratories Massachusetts Institute of Technology

