

<u>Room-Temperature Quantum Sensing in CMOS:</u> On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry

Mohamed I. Ibrahim*, Christopher Foy*, Donggyu Kim*, Dirk R. Englund, and Ruonan Han *Equal Contribution

Massachusetts Institute of Technology

Outline

- Introduction
- CMOS-Based Quantum Magnetometer
 - System Architecture
 - Microwave Signal Generation
 - Optical Excitation Filtering
 - Optical Fluorescence Readout
- Experimental Data
 - Measurement Results Using Layer of Nano-Diamonds
 - Measurement Results Using Bulk Diamond
- Conclusion

Nitrogen Vacancy (NV) in Diamond Magnetometer

Symposia on VLSI Technology and Circuits

Nitrogen Vacancy (NV) in Diamond Magnetometer

• Nano-tesla sensitivity

- Nanometer spatial resolution
- Vector field measurements
- Ambient conditions (room temperature)

Bacteria magnetic imaging Le Sage, et al. Nature 2013

Outline

- Introduction
- CMOS Based Quantum Magnetometer
 - System Architecture
 - Microwave Signal Generation
 - Optical Excitation Filtering
 - Optical Fluorescence Readout
- Experimental Results
 - Measurement Results Using Layer of Nano-Diamonds
 - Measurement Results Using Bulk Diamond
- Conclusion

CMOS Based Quantum Magnetometer

Slide 7

Microwave Signal Generation

- 2.87 GHz microwave signal generation
 - 2.6 GHz 3.1 GHz for optically detected magnetic resonance (ODMR) measurements
- 10 Gauss field strength at 2.87 GHz with 95% homogeneity
 - To increase the contrast
 - To drive the NVs with equal strength for spin control pulsed sequences (Echo, Ramsey,..)

Symposia on VLSI Technology and Circuits

Microwave Signal Generation

Symposia on VLSI Technology and Circuits

Microwave Signal Generation

- <u>10 Gauss</u> with <u>95%</u> uniformity
 - <u>6 mA</u> DC current in the driver
 - <u>25x</u> field strength more than simple non-resonant loop
- 2.6 GHz-3.1 GHz Microwave frequency sweep

Slide 12

Optical Spin Readout

Outline

- Introduction
- CMOS Based Quantum Magnetometer
 - System Architecture
 - Microwave Signal Generation
 - Optical Excitation Filtering
 - Optical Fluorescence Readout
- Experimental Results
 - Measurement Results Using Layer of Nano-Diamonds
 - Measurement Results Using Bulk Diamond
- Conclusion

Passivation Layer Removal

- Background fluorescence is emitted from the passivation (silicon nitrite) layer
- Reactive ion etching (RIE) for passivation layer removal

Nano-Diamonds Deposition

• Deposition of diamond nano-crystals solution

Symposia on VLSI Technology and Circuits

Nano-Diamonds Measurement Results

• Sensitivity: $\eta_{CW} = \frac{1}{\gamma} \frac{\sigma \Delta v}{c} \sqrt{t} = 74 \mu T / \sqrt{Hz}$

where $\gamma = \frac{g_e \mu_B}{h} = 2.8 \text{ MHz/Gauss}$, $\sigma \equiv \text{Std. dev.}$, $\Delta v \equiv \text{Linewidth}$, $C \equiv \text{Contrast}$, $t \equiv \text{Integration Time}$

Symposia on VLSI Technology and Circuits

Bulk Diamond Measurement Results

• Sensitivity: $\eta_{CW} = \frac{1}{\gamma} \frac{\sigma}{m} \sqrt{t} = 2.5 \mu T / \sqrt{Hz}$

where $\gamma = \frac{g_e \mu_B}{h} = 2.8 \text{ MHz/Gauss}$, $\sigma \equiv \text{Std. dev.}$, $m \equiv \text{Slope of FM signal}$, $t \equiv \text{Integration Time}$

Symposia on VLSI Technology and Circuits

Bulk Diamond Measurement Results

Outline

- Introduction
- CMOS Based Quantum Magnetometer
 - System Architecture
 - Microwave Signal Generation
 - Optical Excitation Filtering
 - Optical Fluorescence Readout
- Experimental Results
 - Measurement Results Using Layer of Nano-Diamonds
 - Measurement Results Using Bulk Diamond
- Conclusion

Performance Summary

	Technology	Vector meas.	Optical isolation	Sensing area	Form factor	Sensitivity
This work (Nano- diamonds)	65nm CMOS	No	10 dB	50 μm × 50 μm	~ 1 mm ³ **	73 $\frac{\mu T}{\sqrt{Hz}}$
This work (Bulk Diamond)	65nm CMOS	Yes	20 dB	50 μm × 50 μm	~ 1 mm ³ **	2.5 $\frac{\mu T}{\sqrt{Hz}}$
Nature physics (2015) *	Discrete devices	Yes	>60 dB	1 mm × 1mm	~ 1 m ³	0.29 $\frac{nT}{\sqrt{Hz}}$

*Clevenson, et al. Nature Physics 2015 ** Does not include LASER

Symposia on VLSI Technology and Circuits

Conclusion

- Combines the advantages of CMOS and NV center in diamond in a small form factor
- Couples tightly the CMOS components with NV qubits
- Offers on-chip spin state readout
 - Easy integration of control logic
 - Less IOs
 - Closed-loop feedback between spin-manipulation and readout
- Enables compact and scalable advanced quantum systems.