

RTu1B-4

Heterodyne Sensing CMOS Array with High Density and Large Scale: A 240-GHz, 32-Unit Receiver Using a De-Centralized Architecture

Zhi Hu, Cheng Wang, and Ruonan Han

Massachusetts Institute of Technology

Cambridge, MA, USA

Outline

Introduction

- Array Architecture
- Multi-functional Heterodyne Pixels
- Phase Locking Circuitry
- Measurement Results
- Conclusion

Terahertz Radar as an Important Sensing Mode

ADAS: THE CIRCLE OF SAFETY

[Source: roboticsandautomationnews.com]

- Multiple sensing modes are needed in navigation applications
 where safety is a priority
 - Examples: self-driving cars, unmanned aerial vehicles, etc.

[Source: Getty Images]

Terahertz Radar as an Important Sensing Mode

[Source: roboticsandautomationnews.com]

[Source: Getty Images]

[National Research Council, Assessment of Millimeter-Wave and Terahertz Technology for Detection and Identification of Concealed Explosives and Weapons, 2007]

- Multiple sensing modes are needed in navigation applications where safety is a priority
 - Examples: self-driving cars, unmanned aerial vehicles, etc.
- Terahertz sensing is an important complement to light-based sensing (e.g. LiDAR)
 - Sub-THz waves have much lower propagation loss than light

Possible Path Towards Sharp THz Beam

- If we use a single heterodyne receiver array,
 - to obtain 1° beam width, an area of 6cm x 6cm (~ 10,000 units) is needed at 240 GHz

Possible Path Towards Sharp THz Beam

- If we use a single heterodyne receiver array,
 - to obtain 1° beam width, an area of 6cm x 6cm (~ 10,000 units) is needed at 240 GHz

- One possible solution is based on the two-way array pattern
 - On-board sparse TX array generates sharp beams
 - On-chip dense RX array synthesizes single beam to filter out TX sidelobes -- with relaxed, but still high, scale requirement

Review of Previous On-Chip THz Sensing Arrays

• Direct (Square-Law) Detector Arrays (large scale)

[E. Öjefors, et al., JSSC, 2009]

[R. Han et al., JSSC, 2013]

- Techniques of building large-scale direct detector arrays have become mature
- Limitations of direct detection
 - ☺ Low responsivity and low SNR, due to limited received RF power ($P_{IF} \propto P_{RF}^2$)
 - ☺ Coherence of RF signals is lost, thus unable to perform beam-forming (electrical scanning)

Review of Previous On-Chip THz Sensing Arrays

• Heterodyne Detector Arrays (small scale)

² x 2 array [K. Statnikov, et al., TMTT, 2015]

⁸⁻unit array [C. Jiang, et al., JSSC, 2016]

- Strengths of heterodyne detection
 - ☺ High responsivity and high SNR, by leveraging high LO power ($P_{IF} \propto P_{LO} \cdot P_{RF}$)
 - © Coherence of RF signals is preserved, thus inherently capable of beam-forming
- There are still challenges of designing large-scale heterodyne detector arrays to form sharp beam

===

Outline

Introduction

Array Architecture

- Multi-functional Heterodyne Pixels
- Phase Locking Circuitry
- Measurement Results
- Conclusion

RX Chip: Centralized vs. De-Centralized Arrays

Centralized array relies on a single LO source, however,

LO power of each unit scales down as array scales up
Long LO feed lines are lossy and hard to route

• Example

8-unit array [C. Jiang, et al., JSSC, 2016]

RX Chip: Centralized vs. De-Centralized Arrays

- Centralized array relies on a single LO source, however,
 - LO power of each unit scales down as array scales up
 Long LO feed lines are lossy and hard to route
- De-Centralized array ensures every unit having an LO source
 - © LO sources are coherently coupled; corporate feed is thus eliminated
 - © Oscillator power requirement is relaxed
 - $\ensuremath{\textcircled{\ensuremath{\textcircled{}}}}$ Bonus: LO phase noise improves as more units are coupled

RTu1B-4

2018 IEEE MTT-S Radio Frequency Integrated Circuits Symposium 10-12 June 2018, Philadelphia, PA

Challenges of Scaling and Our Solutions

- Density challenge:
 - Within $\lambda/2 \cdot \lambda/2$ area, antenna, oscillator, mixer, coupler etc. needs to be incorporated

Challenges of Scaling and Our Solutions

• Density challenge:

MIMS

- Within $\lambda/2 \cdot \lambda/2$ area, antenna, oscillator, mixer, coupler etc. needs to be incorporated

2018 IEEE MTT-S Radio Frequency Integrated Circuits Symposium 10-12 June 2018, Philadelphia, PA

Challenges of Scaling and Our Solutions

2018 IEEE MTT-S Radio Frequency Integrated Circuits Symposium

10-12 June 2018, Philadelphia, PA

- Density challenge:
 - Within $\lambda/2 \cdot \lambda/2$ area, antenna, oscillator, mixer, coupler etc. needs to be incorporated

• Self-Oscillating harmonic mixer (SOHM) employed

- Oscillator and mixer condensed into one component
- Slotline-resonator-based
 oscillator coupling employed
- Two interleaved 4x4 array integrated ($A_{unit} = \lambda/2 \cdot \lambda/2$)

MIMS

 $\langle \phi \rangle$

Outline

- Introduction
- Array Architecture

• Multi-functional Heterodyne Pixels

- Phase Locking Circuitry
- Measurement Results
- Conclusion

 $\langle \Phi \rangle$

||===

EM Structure of a Single Cell

- The array consists of 16 cells, each cell contains 2 units
- The boundaries of each unit is well-defined, as a result of LO coupler design
- The unit is structurally and electrically symmetric; a PEC boundary (AB) can be drawn in the middle at f_0

2018 IEEE MTT-S Radio Frequency Integrated Circuits Symposium 10-12 June 2018, Philadelphia, PA

<u>M</u>IMS

EM structure as reference

- TL_4 and TL_4 ' are slot antennas
- TL₃ and TL₃' are resonator and coupler of oscillators
- TL_1 , TL_1 ', TL_2 , and TL_5 are integral components of oscillators

MIMS

RTu1B-4

2018 IEEE MTT-S Radio Frequency Integrated Circuits Symposium 10-12 June 2018, Philadelphia, PA

RFIC

RFIC

- Self-oscillating harmonic mixer (SOHM) can be regarded as an oscillator that
 - Oscillates at f_0 = 120 GHz and simultaneously generates LO signal f_{LO} = 2 f_0 = 240 GHz
 - Receives RF power from resonator (TL₄, Resonator II)
 - **Down-converts** RF to IF, i.e. $f_{IF} = f_{RF} 2f_0$ (using the non-linearity of the transistor)
- Oscillator is optimized to the optimal phase condition by choosing proper Z_{TL1} and ϕ_{TL1}

Highlight II: Near-field Interference

- Resonator I and II are for coupling and radiation cancelling
- For explanation, E-field distributions are needed

RTu1B-4

22

RFIC

Highlight II: Near-field Interference at f₀

- Resonator I and II are for coupling and radiation cancelling
- For explanation, E-field distributions are needed

- At $f_0 = f_{LO}/2$, waves in TL₃ induce coupling between oscillators
- E-Field polarizations in TL_3 and TL_4 of adjacent units ensure radiation cancellation at f_0

Theoretical prediction

• Full-wave Simulation (ports at drains are driven)

Highlight II: Near-field Interference at $2f_0$

- Resonator I and II are for coupling and radiation cancelling
- For explanation, E-field distributions are needed

- At $2f_0 = f_{LO}$, waves are largely confined within the transistor
- Potential radiation is cancelled due to polarizations

Theoretical prediction

Full-wave simulation (ports at drains are driven)

MIMS

Highlight II: Near-field Interference at f_{RF}

- Resonator I and II are for coupling and radiation cancelling
- For explanation, E-field distributions are needed

- At f_{RF} , waves are received by antennas since they are from a far-field source with the same polarization
- Down-converted IF signals are thus out-of-phase

Theoretical prediction

• Full-wave simulation (ports at antennas are driven)

- Resonator I and II are for coupling and radiation cancelling
- For explanation, E-field distributions are needed

- At f_0 , waves in TL₃ induce coupling between oscillators
- E-Field polarizations in TL_3 and TL_4 of adjacent units ensure radiation cancellation at f_0

- At $2f_0$, waves are largely confined within the transistor
 - Potential radiation is cancelled due to polarizations

• At f_{RF} , waves are received by antennas since they are from a far-field source with the same polarization

Simulation Results of SOHM Performance

- DC Power per unit: 43.2 mW ٠
- Conversion loss (CL): 16 dB (with 50- Ω output load)
- Noise figure (NF): 46.5dB at f_{IF} =5 MHz; 19.3 dB at f_{IF} =100 MHz .
- Antenna peak directivity: 4.8 dB; antenna efficiency: 40 % •

IF Noise PSD (dBm/Hz) -140 -150 -160 -170 -170

10k

100k

1M

10M

100M

1**G**

-130

Outline

- Introduction
- Array Architecture
- Multi-functional Heterodyne Pixels
- Phase Locking Circuitry
- Measurement Results
- Conclusion

Overview of the Phase Locking Circuitry

Overview of the Phase Locking Circuitry

- Bottom two pixel units inject a small amount of waves at $f_0 = 120$ GHz into the divider
- PLL components generate the VCO control voltage for the entire array
- Due to array-wide coupling, all units are locked

= = =

Design of the 120-GHz Divide-by-16 Divider

- 1st stage: div-by-4 ILFD, based on $f_{inj} = 4f_{osc}$ mixing with $3f_{osc}$
- 2nd stage: div-by-4 ILFD, based on injected signals modulating the current sources of the ring oscillator
- Total DC power consumption: 10.5 mW

- Introduction
- Array Architecture
- Multi-functional Heterodyne Pixels
- Phase Locking Circuitry
- Measurement Results
- Conclusion

- Technology: 65nm CMOS; chip area 2.8 mm² (1.21 mm² for the array)
- Silicon lens is attached to the backside of the chip (backside radiation)
- Off-Chip multiplexer is used to select the desired IF signal from 32 outputs

1333

OIMS

RFIC

Overview of the Chip Measurement

Spectrum of the divider output

MIMS

- VDI WR-3.4 extender is used as the RF source
- Frequency reference of the chip and the VDI source are synchronized
- Locking range of the array (obtained from divider output): 232.96 GHz – 234.88 GHz

2018 IEEE MTT-S Radio Frequency Integrated Circuits Symposium 10-12 June 2018, Philadelphia, PA RFIC

Measured IF Spectra at Low/High Frequencies

IF noise spectrum (from spectrum analyzer)

Flicker noise dominates until ~ 450 MHz (IF amp BW = 500 MHz)

Measured IF Spectra at Low/High Frequencies

IF noise spectrum (from spectrum analyzer)

- Flicker noise dominates until ~ 450
 MHz (IF amp BW = 500 MHz)
- At 4.6 MHz (below corner frequency),
 SNR = 63 dB (RBW = 1Hz)
- At 475 MHz (beyond corner frequency), SNR = 87 dB (RBW = 1Hz)
- Other pixels are also locked; they have similar responses, and their f_{IF} all shifts simultaneously as f_{ref} shifts

Measured 4.6-MHz IF of Some Other Units

2018 IEEE MTT-S Radio Frequency Integrated Circuits Symposium 10-12 June 2018. Philadelphia. PA

Antenna Pattern and Performance Evaluation

Measured and simulated antenna patterns (E-Plane)

Measured and simulated antenna patterns (H-Plane)

• Conversion gain (dB)

 $CG = P_{IF} - P_{RF}, \text{ where}$ $P_{IF} = P_{IF, \text{ analyzer}} - G_{amp}, \text{ and}$ $P_{RF} = P_{RF, TX} + D_{TX} + G_{RX} - 20\log_{10}(\lambda/(4\pi d))$

- Noise figure (dB) $NF = P_{noise} - (-174 \text{ dBm}) - CG, \text{ where}$ $P_{noise} = 10 \log_{10}(10^{(Pnoise, analyzer - Gamp)/10} - 10^{-17.4})$ (considering $NF_{amp} = 3 \text{ dB}$)
- Here, we have $G_{amp} = 49 \text{ dB}$, $P_{RF,TX} = -7.1 \text{ dBm}$, $D_{TX} = 24 \text{ dBi}$, $D_{RX} = 6.0 \text{ dB}$, $\eta_{RX} = 40 \%$ (simulated), $\lambda = 1.28 \text{ mm}$, d = 0.1 m
- For f_{IF} = 475 MHz (beyond corner frequency), CG = -42.4 dB, NF = 44.2 dB

Define Sensitivity = $NEP \cdot \sqrt{1000Hz} = -174 \text{ dBm} + NF + 30\text{dB};$ for $f_{IF} = 475 \text{ MHz}$, Sensitivity = 0.105 pW

RFIC

Measured Phase Noise of the LO Signal

MIMS

- VDI extender is placed very close to the chip to capture the leaked near-field radiation at $2f_0$
- Measured 2f₀ phase noise at 1 MHz offset is -84 dBc/Hz

Performance Comparison

References	This Work	[5]	[1]	[2]	[3]	
Detection Method	Heterodyne Detection		Square-Law (Direct) Detection			
Array Size	4x8	8	4x4			
Array Scalability	Yes	No	Yes	Yes	Yes	
RF Frequency (GHz)	240	320	280	320	280	
Sensitivity (pW)	0.105 †	71.4	917	1080	250	
DC Power (mW)	980	117	6	38	180	
Chip Area (mm ²)	2.80	3.06	5.76	6.76	6.25	
Technology	65nm CMOS	130nm SiGe	130nm CMOS	180nm SiGe	130nm SiGe	

Notes:

† Calculated based on P_{IF} and P_{noise} at f_{IF} = 475 MHz

Performance Comparison

References	This Work	[5]	[1]	[2]	[3]	
Detection Method	Heterodyne Detection		Square-Law (Direct) Detection			
Array Size	4x8	8	4x4			
Array Scalability	Yes	No	Yes	Yes	Yes	
RF Frequency (GHz)	240	320	280	320	280	
Sensitivity (pW)	0.105 †	71.4	917	1080	250	
DC Power (mW)	980	117	6	38	180	
Chip Area (mm ²)	2.80	3.06	5.76	6.76	6.25	
Technology	65nm CMOS	130nm SiGe	130nm CMOS	180nm SiGe	130nm SiGe	

Notes:

+ Calculated based on P_{IF} and P_{noise} at f_{IF} = 475 MHz

- Introduction
- Array Architecture
- Multi-functional Heterodyne Pixels
- Phase Locking Circuitry
- Measurement Results
- Conclusion

Conclusion

- For the first time, heterodyne receiver array has achieved large scale and high density that are comparable to those of square-law detector arrays
- Our array improves the sensitivity by ~680x compared with the 8-unit heterodyne receiver array, and by ~2400x compared with the best squarelaw detector arrays
- Scalability and sensitivity improvements make sub-THz array technology a more promising candidate for the implementation of high-resolution beamforming imagers in the future

Acknowledgement

- The authors would like to thank
 - Guo Zhang, Jack Holloway and Dr. Xiang Yi at MIT for technical discussions
 - Dr. Andrew Westwood and Kathleen Howard at Keysight Inc. for their support to the experimental instruments
- This work was supported by
 - The National Science Foundation CAREER Award (ECCS-1653100)
 - Taiwan Semiconductor Manufacturing Company (TSMC)
 - The Singapore-MIT Research Alliance

RTu1B-4

Heterodyne Sensing CMOS Array with High Density and Large Scale: A 240-GHz, 32-Unit Receiver Using a De-Centralized Architecture

Zhi Hu, Cheng Wang, and Ruonan Han

Massachusetts Institute of Technology

Cambridge, MA, USA

