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Terahertz Radar as an Important Sensing Mode

• Multiple sensing modes are needed in navigation applications 

where safety is a priority

– Examples: self-driving cars, unmanned aerial vehicles, etc.

[Source: roboticsandautomationnews.com]

[Source: Getty Images]
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Terahertz Radar as an Important Sensing Mode

• Multiple sensing modes are needed in navigation applications 

where safety is a priority

– Examples: self-driving cars, unmanned aerial vehicles, etc.

[Source: roboticsandautomationnews.com]

[Source: Getty Images]

[National Research Council, Assessment of Millimeter-Wave and Terahertz Technology 

for Detection and Identification of Concealed Explosives and Weapons, 2007]

~0.01 dB/m @ 240 GHz

• Terahertz sensing is an important complement to light-based 

sensing (e.g. LiDAR)

– Sub-THz waves have much lower propagation loss than light
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Possible Path Towards Sharp THz Beam

• If we use a single heterodyne receiver array, 

– to obtain 1° beam width, an area of 6cm x 6cm (~ 10,000 units) is needed at 240 GHz
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Possible Path Towards Sharp THz Beam

10×10 Sparse 

TX Array

10×10 Dense 

RX Array

• One possible solution is based on the two-way array pattern

– On-board sparse TX array generates sharp beams

– On-chip dense RX array synthesizes single beam to filter out TX sidelobes -- with relaxed, but still high, scale requirement
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• If we use a single heterodyne receiver array, 

– to obtain 1° beam width, an area of 6cm x 6cm (~ 10,000 units) is needed at 240 GHz
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Review of Previous On-Chip THz Sensing Arrays

[E. Öjefors, et al., JSSC, 2009] [R. Al Hadi et al., JSSC, 2012] [R. Han et al., JSSC, 2013]

• Direct (Square-Law) Detector Arrays (large scale)

• Techniques of building large-scale direct detector arrays have become mature

• Limitations of direct detection

 Low responsivity and low SNR, due to limited received RF power (PIF ∝ PRF
2)

 Coherence of RF signals is lost, thus unable to perform beam-forming (electrical scanning)
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Review of Previous On-Chip THz Sensing Arrays

2 x 2 array [K. Statnikov, et al., TMTT, 2015] 8-unit array [C. Jiang, et al., JSSC, 2016]

• Heterodyne Detector Arrays (small scale)

• Strengths of heterodyne detection

 High responsivity and high SNR, by leveraging high LO power (PIF ∝ PLO ∙ PRF) 

 Coherence of RF signals is preserved, thus inherently capable of beam-forming

• There are still challenges of designing large-scale heterodyne detector arrays to form sharp beam
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RX Chip: Centralized vs. De-Centralized Arrays

On-Chip 

Antennas

Sub-THz 

Mixers

On-Chip 

Sub-THz PLL

Sensing 

Pixel

Sub-THz LO 

Signal, fLO

fIF

÷N

PFDLPF

Reference 

Clock, fref

• Centralized array relies on a single LO source, however,

 LO power of each unit scales down as array scales up

 Long LO feed lines are lossy and hard to route 8-unit array [C. Jiang, et al., JSSC, 2016]

• Example
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RX Chip: Centralized vs. De-Centralized Arrays
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Antennas

Sub-THz 
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• De-Centralized array ensures every unit having an LO source

 LO sources are coherently coupled; corporate feed is thus eliminated

 Oscillator power requirement is relaxed

 Bonus: LO phase noise improves as more units are coupled

• Centralized array relies on a single LO source, however,

 LO power of each unit scales down as array scales up

 Long LO feed lines are lossy and hard to route
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Challenges of Scaling and Our Solutions

Coupled 

Local 

Oscillators

Phase/Frequency Control, vctrl
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Signal, fLO

On-Chip Phase-
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fIF
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Reference 
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On-Chip 

Antennas

Sub-THz 

Mixers

• Density challenge:

– Within λ/2 ∙ λ/2 area, antenna, 

oscillator, mixer, coupler etc. 

needs to be incorporated
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Challenges of Scaling and Our Solutions

• Density challenge:

– Within λ/2 ∙ λ/2 area, antenna, 

oscillator, mixer, coupler etc. 

needs to be incorporated
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• Self-Oscillating harmonic mixer 

(SOHM) employed

– Oscillator and mixer condensed 

into one component

• Slotline-resonator-based 

oscillator coupling employed

• Two interleaved 4x4 array 

integrated (Aunit = λ/2 ∙ λ/2)
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Challenges of Scaling and Our Solutions

• Density challenge:
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EM Structure of a Single Cell

• The array consists of 16 cells, 

each cell contains 2 units

• The boundaries of each unit is well-defined, as 

a result of LO coupler design

• The unit is structurally and electrically symmetric; a PEC 

boundary (AB) can be drawn in the middle at f0
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Highlight I: Multifunctional Structures

Vctrl
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EM structure as reference

• TL4 and TL4’ are slot antennas

• TL3 and TL3’ are resonator and coupler 

of oscillators

• TL1, TL1’, TL2, and TL5 are integral 

components of oscillators
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Highlight I: Multifunctional Structures
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Highlight I: Multifunctional Structures
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[Han et al., JSSC, 2013]
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Highlight I: Multifunctional Structures
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Highlight I: Multifunctional Structures
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• Self-oscillating harmonic mixer (SOHM) can be regarded as an oscillator that

– Oscillates at f0 = 120 GHz and simultaneously generates LO signal fLO = 2f0 = 240 GHz

– Receives RF power from resonator (TL4, Resonator II)

– Down-converts RF to IF, i.e. fIF = fRF – 2f0 (using the non-linearity of the transistor)

• Oscillator is optimized to the optimal phase condition by choosing proper ZTL1 and φTL1

TL3

TL1

TL4

C1M1

Self-Feeding Oscillator

Enhance 

instability

Antenna

(Resonator II)

Coupler

(Resonator I)

[Han et al., JSSC, 2013]
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Highlight II: Near-field Interference

TL3

TL1

TL4
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Coupler

(Resonator I)

• Resonator I and II are for coupling and radiation cancelling

• For explanation, E-field distributions are needed
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Highlight II: Near-field Interference at f0

• At f0 = fLO/2, waves in TL3 induce coupling between 

oscillators

• E-Field polarizations in TL3 and TL4 of adjacent units 

ensure radiation cancellation at f0

TL3

TL1

TL4
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• Resonator I and II are for coupling and radiation cancelling

• For explanation, E-field distributions are needed
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• Full-wave Simulation (ports at drains are driven)

• Theoretical prediction
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Highlight II: Near-field Interference at 2f0

• At 2f0 = fLO, waves are largely confined within the transistor

• Potential radiation is cancelled due to polarizations
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• Resonator I and II are for coupling and radiation cancelling

• For explanation, E-field distributions are needed

• Full-wave simulation (ports at drains are driven)

• Theoretical prediction
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Highlight II: Near-field Interference at fRF
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• Resonator I and II are for coupling and radiation cancelling

• For explanation, E-field distributions are needed

• At fRF, waves are received by antennas since they are from 

a far-field source with the same polarization

• Down-converted IF signals are thus out-of-phase

• Full-wave simulation (ports at antennas are driven)

• Theoretical prediction
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Recap: Multi-functionality + Near-field Interference
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• Resonator I and II are for coupling and radiation cancelling

• For explanation, E-field distributions are needed

• At 2f0, waves are largely confined within the transistor

• Potential radiation is cancelled due to polarizations

• At f0, waves in TL3 induce coupling between oscillators

• E-Field polarizations in TL3 and TL4 of adjacent units ensure 

radiation cancellation at f0
• At fRF, waves are received by antennas since they are 

from a far-field source with the same polarization
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Simulation Results of SOHM Performance

• DC Power per unit: 43.2 mW

• Conversion loss (CL): 16 dB (with 50-Ω output load)

• Noise figure (NF): 46.5dB at fIF =5 MHz; 19.3 dB at fIF =100 MHz 
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• Antenna peak directivity: 4.8 dB; antenna efficiency: 40 %

Simulated beam-steering results

Simulated IF noise floor

Simulated f0 phase noise
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Overview of the Phase Locking Circuitry

Phase/Frequency Control, vctrl

Sub-THz LO 

Signal, fLO

On-Chip Phase-
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Clock, fref
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Overview of the Phase Locking Circuitry

• Bottom two pixel units inject a small amount of waves at f0 = 120 GHz into the divider

• PLL components generate the VCO control voltage for the entire array

• Due to array-wide coupling, all units are locked
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Design of the 120-GHz Divide-by-16 Divider

• 1st stage: div-by-4 ILFD, based on finj = 4fosc mixing with 3fosc 

• 2nd stage: div-by-4 ILFD, based on injected signals modulating the current sources of the ring oscillator

• Total DC power consumption: 10.5 mW
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• Silicon lens is attached to the backside of the chip (backside radiation)

• Off-Chip multiplexer is used to select the desired IF signal from 32 outputs

• Technology: 65nm CMOS; chip area 2.8 mm2 (1.21 mm2 for the array)
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Power 
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Overview of the Chip Measurement

VDI 220-to-320GHz 

Frequency Extender

Chip and PCB Spectrum 

Analyzer

Signal 

Generator

• VDI WR-3.4 extender is used as the RF source

• Frequency reference of the chip and the VDI 

source are synchronized

• Locking range of the array (obtained from 

divider output): 232.96 GHz – 234.88 GHz

Spectrum of the divider output
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Measured IF Spectra at Low/High Frequencies

• Flicker noise dominates until ~ 450 

MHz (IF amp BW = 500 MHz)

IF noise spectrum (from spectrum analyzer)

White Noise Floor

0 dBm
 Start: 1.0 MHz

 Stop: 500.0 MHz

 RBW: 100 kHz

-100 dBm

4.6 MHz

475 MHz
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Noise Floor when 

RF Signal is Absent

4.6-MHz

IF Signal63 dB SNR
(normalized to 

1-Hz RBW)

0 dBm

-100 dBm

 Center: 4.60 MHz
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IF Signal
87 dB SNR
(normalized to 

1-Hz RBW)

0 dBm

-100 dBm

 Center: 475 MHz

 Span: 50.0 MHz

 RBW: 100 kHz

Measured IF Spectra at Low/High Frequencies

• Flicker noise dominates until ~ 450 

MHz (IF amp BW = 500 MHz)

• At 4.6 MHz (below corner frequency), 

SNR = 63 dB (RBW = 1Hz)

• At 475 MHz (beyond corner frequency), 

SNR = 87 dB (RBW = 1Hz)

• Other pixels are also locked; they have 

similar responses, and their fIF all shifts 

simultaneously as fref shifts

IF noise spectrum (from spectrum analyzer)

IF spectrum (fIF = 4.6 MHz)

IF spectrum (fIF = 475 MHz)

White Noise Floor

0 dBm
 Start: 1.0 MHz

 Stop: 500.0 MHz

 RBW: 100 kHz

-100 dBm

4.6 MHz

475 MHz
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Measured 4.6-MHz IF of Some Other Units

Row 3, Col 4Row 2, Col 2Row 1, Col 3

Row 7, Col 2 Row 8, Col 2Row 6, Col 3
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Antenna Pattern and Performance Evaluation

• Conversion gain (dB)

CG = PIF – PRF , where 

PIF = PIF, analyzer – Gamp, and

PRF = PRF, TX + DTX + GRX – 20log10(λ/(4πd))

• Noise figure (dB)

NF = Pnoise – (-174 dBm) – CG, where

Pnoise = 10log10(10(Pnoise, analyzer – Gamp)/10 – 10-17.4)

(considering NFamp = 3dB)

• Here, we have Gamp = 49 dB, PRF,TX = -7.1 dBm, DTX = 24 dBi, 

DRX = 6.0 dB, ηRX = 40 % (simulated), λ = 1.28 mm, d = 0.1 m

• For fIF =  475 MHz (beyond corner frequency), CG = -42.4 dB, 

NF = 44.2 dB

Measured and simulated antenna patterns (E-Plane)

Measured and simulated antenna patterns (H-Plane)

Define Sensitivity = NEP ∙ √1000Hz = -174 dBm + NF + 30dB; 

for fIF = 475 MHz, Sensitivity = 0.105 pW
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Measured Phase Noise of the LO Signal

Down-converted 2f0

-10 dBm

-110 dBm

 Center: 240 MHz

 Span: 2.00 MHz

 RBW: 20 Hz -84 dBc/Hz @ 1-MHz Offset

-40 dBc/Hz @ 1-kHz Offset

0 dBc/Hz

-100 dBc/Hz

Power Supply Agilent N9020A MXA
Spectrum Analyzer

WR-3.4 
Antenna

HP 83732B
Signal Generator

 2f0 - Δf

Δf fLO / 3200

10 MHz Sync

...

LDO Board 
(ADP7157)

Keysight E-8257D
Signal Generator

DC 

Biases

 2f0

VDI WR-3.4
Frequency Extender

(RX Mode)
Near Field

ZFL-500LN 
Amplifiers

• VDI extender is placed very close to the chip to capture the 

leaked near-field radiation at 2f0

• Measured 2f0 phase noise at 1 MHz offset is -84 dBc/Hz

Spectrum of the leaked 2f0 signal Measured phase noise of the 2f0 signal
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Performance Comparison

References This Work [5] [1] [2] [3]

Detection Method Heterodyne Detection Square-Law (Direct) Detection

Array Size 4x8 8 4x4

Array Scalability Yes No Yes Yes Yes

RF Frequency (GHz) 240 320 280 320 280

Sensitivity (pW) 0.105 † 71.4 917 1080 250

DC Power (mW) 980 117 6 38 180

Chip Area (mm2) 2.80 3.06 5.76 6.76 6.25

Technology 65nm CMOS 130nm SiGe 130nm CMOS 180nm SiGe 130nm SiGe

Notes:
† Calculated based on PIF and Pnoise at fIF = 475 MHz
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Performance Comparison

References This Work [5] [1] [2] [3]

Detection Method Heterodyne Detection Square-Law (Direct) Detection

Array Size 4x8 8 4x4

Array Scalability Yes No Yes Yes Yes

RF Frequency (GHz) 240 320 280 320 280

Sensitivity (pW) 0.105 † 71.4 917 1080 250

DC Power (mW) 980 117 6 38 180

Chip Area (mm2) 2.80 3.06 5.76 6.76 6.25

Technology 65nm CMOS 130nm SiGe 130nm CMOS 180nm SiGe 130nm SiGe

Notes:
† Calculated based on PIF and Pnoise at fIF = 475 MHz
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• Introduction

• Array Architecture

• Multi-functional Heterodyne Pixels

• Phase Locking Circuitry

• Measurement Results

• Conclusion
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Outline
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• For the first time, heterodyne receiver array has achieved large scale and 

high density that are comparable to those of square-law detector arrays

• Our array improves the sensitivity by ∼ 680x compared with the 8-unit 

heterodyne receiver array, and by ∼2400x compared with the best square-

law detector arrays

• Scalability and sensitivity improvements make sub-THz array technology a 

more promising candidate for the implementation of high-resolution beam-

forming imagers in the future
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Conclusion
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