

ISSCC 2019

SESSION 29 Quantum & Photonics Technologies

A Scalable Quantum Magnetometer in 65nm CMOS with Vector-Field Detection Capability

Mohamed I. Ibrahim, Christopher Foy, Dirk R. Englund, and Ruonan Han Massachusetts Institute of Technology Cambridge, MA, USA

Applications of Magnetometers

 Magnetic field sensors are used for navigation, tracking, mineral exploration, current sensing, magnetocardiography and other applications

Navigation in GPS Denied Environments www.hoveringsolutions.com

Tracking of Moving Metallic or Magnetic Object

Magnetometers Comparison

Magnetometers Comparison

- Sub-nT magnetic sensitivity
- Ambient conditions

- Vector field measurements
- Large dynamic range

NV Centers in Diamond for Quantum Sensing

Hybrid CMOS-Diamond Quantum Systems

Outline

Introduction

- Magnetometry Principle Using NV Centers in Diamond
- Scalable CMOS-Diamond Hybrid Magnetometer
 - Uniform Microwave Array Design
 - Talbot Effect-Based Optical Filter
 - Complete System Integration
- Measurement Results and Real-Time Demo
- Conclusions

NV Centers in Diamond Magnetometer

NV Centers in Diamond Magnetometer

- Optically detected magnetic resonance (ODMR)
- External magnetic field is measured using Zeeman splitting ($\gamma_e = 28$ GHz/T)

NV Centers in Diamond Magnetometer

- Optically detected magnetic resonance (ODMR)
- External magnetic field is measured using Zeeman splitting ($\gamma_e = 28$ GHz/T)
- B_{z1} , B_{z2} , B_{z3} , B_{z4} are the projections of B_{ext} along the NV axes

Integrated CMOS-Diamond Quantum Magnetometer

Integrated CMOS-Diamond Quantum Magnetometer

Integrated CMOS-Diamond Quantum Magnetometer

CMOS-Diamond Magnetometer Design Constraints

- The sensitivity (η) is the minimum detectable magnetic field (T/ \sqrt{Hz})
- $\eta \propto 1/SNR$

CMOS-Diamond Magnetometer Design Constraints

- The sensitivity (η) is the minimum detectable magnetic field (T/ \sqrt{Hz})
- $\eta \propto 1/SNR$

Outline

- Introduction
- Magnetometry Principle Using NV Centers in Diamond
- Scalable CMOS-Diamond Hybrid Magnetometer
 - Uniform Microwave Array Design
 - Talbot Effect-Based Optical Filter
 - Complete System Integration
- Measurement Results and Real-Time Demo
- Conclusions

Microwave Coupling Structure

- A scalable structure with homogeneous field profile generation is required
- Previously straight wires and loops are commonly used
 - Microwave field homogeneity is achieved within only a small area
 - Scaling up for larger areas is hard

Uniform Sheet of Current

RF Current Redistribution in a Single Flat Conductor

• The total magnetic field component at y direction from the sheet is:

$$B_y = \frac{\mu_0 J_s}{2}$$

where J_s is the current density across the sheet

Uniform Sheet of Current

RF Current Redistribution in a Single Flat Conductor

- Regulation and arbitrary control of local currents using transistors
- Highly-scalable, CMOS-enabled structure
 - This design can be extended to larger areas

• The magnetic field at location (0,y,z) of each conductor located at $(0,y_n,0)$ is:

$$|B_n| = \frac{\mu_0 I_n}{2\pi r} = \frac{\mu_0 I_n}{2\pi \sqrt{(y - y_n)^2 + z^2}}$$
; $y_n = nd$

where d is the array pitch size

• The total magnetic field component at y direction from all the conductors is:

$$B_{y} = \sum_{-\frac{N}{2}}^{\frac{N}{2}} B_{y_{n}} = \sum_{-\frac{N}{2}}^{\frac{N}{2}} \frac{\mu_{0}I_{n}}{2\pi} \frac{z}{(y-y_{n})^{2} + z^{2}}$$

• The total magnetic field component in z direction from all the conductors is:

$$B_{z} = \sum_{-\frac{N}{2}}^{\frac{N}{2}} B_{z_{n}} = \sum_{-\frac{N}{2}}^{\frac{N}{2}} \frac{\mu_{0}I_{n}}{2\pi} \frac{y - y_{n}}{(y - y_{n})^{2} + z^{2}}$$
$$\approx \frac{\mu_{0}I_{n}}{4\pi} \left(\ln \left[\left(y - \frac{N}{2} d \right)^{2} + z^{2} \right] - \ln \left[\left(y + \frac{N}{2} d \right)^{2} + z^{2} \right] \right)$$

where $y_n = nd$ and d is the array pitch size

Microwave Array with Uniform Magnetic Field

• The total magnetic field component in z direction from all the conductors is:

- $Q_n = \frac{y y_n}{(y y_n)^2 + z^2}$
- $y_n = nd$ and d is the array pitch size
- *l* is the number of boundary conductors
- β is the ratio between the boundary and the core conductors currents

Microwave Array with Uniform Magnetic Field

Large boundary current to compensate for the vertical field

• The total magnetic field component in z direction from all the conductors is:

 $B_{z} = \sum_{-\frac{N}{2}-l}^{-\frac{N}{2}-1} \beta Q_{n} + \sum_{-\frac{N}{2}}^{\frac{N}{2}} Q_{n} + \sum_{\frac{N}{2}+l}^{\frac{N}{2}+l} \beta Q_{n}$ $\approx \frac{\mu_{0} I_{n}}{4\pi} \left[(1-\beta) \left(\ln \left[\left(y - \frac{N}{2} d \right)^{2} + z^{2} \right] - \ln \left[\left(y + \frac{N}{2} d \right)^{2} + z^{2} \right] \right) + \beta \left(\ln \left[\left(y - \left(\frac{N}{2} + l \right) d \right)^{2} + z^{2} \right] - \ln \left[\left(y + \left(\frac{N}{2} + l \right) d \right)^{2} + z^{2} \right] \right) \right]$

- $\quad \boldsymbol{Q}_n = \frac{\boldsymbol{y} \boldsymbol{y}_n}{(\boldsymbol{y} \boldsymbol{y}_n)^2 + \boldsymbol{z}^2}$
- y_n = nd and d is the array pitch size
- *l* is the number of boundary conductors
- β is the ratio between the boundary and the core conductors currents

Microwave Array with Uniform Magnetic Field

CMOS Implementation of the Microwave Array

- The spacing between the conductors is 2µm
- \bullet The width of the conductors is $2\mu m$
- The core current (I_0) is 0.5mA and the boundary current (I_B) is $3I_0$

CMOS Implementation of the Microwave Array

- The spacing between the conductors is 2µm
- \bullet The width of the conductors is $2\mu m$
- The core current (I_0) is 0.5mA and the boundary current (I_B) is $3I_0$

Microwave Generation Circuitry

• Switches are added at the output of the PLL to perform pulsed sequences

Optical Excitation Filtering

Increases the contrast

Optical Excitation Filtering

- Previously, we implemented sub-wavelength plasmonic filter
 - It is based on wavelength dependent losses
 - It is implemented on M8 with measured isolation is 10 dB
- Similar filter was used for fluorescence bio-sensing
- These filters are enabled by deep sub-µm technology nodes

Talbot Effect Based Optical Filter Concept

- The grating diffraction pattern form periodic interference patterns
- Second layer is placed at the maxima of the green diffraction pattern
 - Results in extra rejection
- Talbot effect was previously used for angle sensitive camera
 - Transmission depends on the incidence angle at certain wavelength

A. Wang, et al., ISSCC 2011

Talbot Effect Based Optical Filter Concept

• The second metal layer is placed at M6

• The position is aligned with the maxima of green and minima of red

Three Layer Optical Filter

- Gratings pitch is 800nm
- Simulated green to red rejection is 30 dB
- Measured isolation for green light is 25 dB

Microwave Array and Optical Filter Co-Design

• Measured photodiode responsivity is 180mA/W

Scalable Hybrid CMOS-Diamond Magnetometer

• Diamond is cut to enhance filtering

• Photodiode area is 80µm×300µm

80µm

Outline

- Introduction
- Magnetometry Principle Using NV Centers in Diamond
- Scalable CMOS-Diamond Hybrid Magnetometer
 - Uniform Microwave Array Design
 - Talbot Effect-Based Optical Filter
 - Complete System Integration
- Measurement Results and Real-Time Demo
- Conclusions

Chip Micrograph

- TSMC 65nm CMOS process
- Chip area: 1mm × 1.5mm
- DC power consumption: 40mW

Measurement Setup

- Lock-in detection is done to reject the residual unmodulated DC green laser background
- Differential measurement is done to cancel the laser intensity variation

Measured ODMR at Zero External Field

- Wavelength modulated optically detected magnetic resonance (ODMR) at zero external magnetic field is measured
- Wavelength modulation ODMR is close to the derivative of the ODMR without wavelength modulation

Measured ODMR at 5.4mT External Field

• B_{z1} , B_{z2} , B_{z3} , B_{z4} are the projections of B_{ext} along the NV axes

Magnetic Sensitivity Measurements

- Magnetic sensitivity is the minimum detectable magnetic field (T/ \sqrt{Hz})
 - Noise voltage, $\sigma = 100$ nV/Hz^{1/2}, Slope, $m = 15\mu$ V/MHz
 - Gyromagnetic ratio, $\gamma_e = 28$ GHz/T
- Magnetic sensitivity, $\eta_{CW} = \sigma/(\gamma_e m) = 245 \text{nT}/\sqrt{\text{Hz}}$

Real-Time Vector Field Measurements of a Magnet

© 2019 IEEE International Solid-State Circuits Conference

29.2: A Scalable Quantum Magnetometer in 65nm CMOS with Vector-Field Detection Capability

Outline

- Introduction
- Magnetometry Principle Using NV Centers in Diamond
- Scalable CMOS-Diamond Hybrid Magnetometer
 - Uniform Microwave Array Design
 - Talbot Effect-Based Optical Filter
 - Complete System Integration
- Measurement Results and Real-Time Demo
- Conclusions

Summary of the Design

- Hybrid CMOS-Diamond platform for quantum magnetometry
 - Combines the advantages of CMOS and NV centers in diamond
 - Enables a compact sensitive magnetic field sensor
- Co-designed scalable microwave coupling structure and photonic filter
 - Can be scaled to larger areas for better sensitivity
 - Offers high isolation filtering on CMOS
- Coherent control of NV ensembles
 - Enables the implementation of advanced spin control sequences
- Integrated system that perform spin state coherent control and readout
 - Offers closed-loop feedback between spin-manipulation and readout
 - Decreases the number of IOs

CMOS-Diamond Scalable Magnetometer

CMOS-Diamond Magnetometer Sensitivity Roadmap

The Future of CMOS-Diamond Magnetometer

The Future of CMOS-Diamond Quantum Sensing

 Integrated CMOS-Diamond platforms that can be used for magnetic field imaging or distributed sensing

Acknowledgement

- National Science Foundation (RAISE-TAQS: 1824360)
- MIT Center for Integrated Circuits & Systems
- Singaporean-MIT Research Alliance
- Master Dynamic Limited
- Army Research Office MURI on "Imaging and Control of Biological Transduction using NV-Diamond"
- Xiang Yi, Donggyu Kim, David Bono, and Cheng Peng at MIT for their technical assistance during prototyping and testing