# Sub-THz CMOS Molecular Clock with 43*ppt* Long-Term Stability Using High-Order Rotational Transition Probing and Slot-Array Couplers

**Cheng Wang**, Xiang Yi, Mina Kim, Ruonan Han Massachusetts Institute of Technology, Cambridge, MA



### Outline

- Background
- High-order locking for long-term stabilization
- Architecture and circuit design
- Measurement results
- Conclusions

### **Ultra-Stable, Miniaturized Clocks**



<sup>[</sup>researchsnipers.com]

Synchronization of high-speed radio access networks

- 5G massive MIMO  $\rightarrow \sigma_t < 65ns$
- Precise positioning  $\rightarrow \sigma_t < 10ns$
- 1-min holdover  $\rightarrow \Delta f < 10^{-10}$



Precise timing for underwater oil exploration

- Temp. variation  $\rightarrow \Delta f < 10^{-9}$
- Deployment time → Weeks
- DC Power  $\rightarrow \sim 100 mW$

#### **Comparison of Portable Clocks**



### Outline

- Background
- High-order locking for long-term stabilization
- Architecture and circuit design
- Measurement results
- Conclusions

#### **Rotational Spectra of Polar Gaseous Molecules**



### Wavelength Modulation Spectroscopy (WMS)





 $V_{WM}(t) = A(t) \cdot \sin[2\pi f_{\rho}t + \Delta f \cdot \sin(2\pi f_{m}t + \theta_{0})]$ 

 $f_m$  - Modulation freq.  $\Delta f$  - Freq. deviation

### High Order Harmonics of *f*<sub>m</sub>



## High Order Harmonics of *f*<sub>m</sub>



#### **Multi-Order Dispersion Curves**



#### **Multi-Order Dispersion Curves**



#### **Molecular Clock Locking to Spectral Line Center**



#### **Proof-of-Concept:** The 1<sup>st</sup> **CSMC Prototype**





- 231.061GHz line of OCS
- 1<sup>st</sup> order dispersion curve
- Frequency stability:

σ<sub>y</sub>=3.8×10<sup>-10</sup>@τ=10<sup>3</sup>s

• 66mW DC power.

[C. Wang, et al., *Nature Electronics*, 2018]

### **Frequency Stability of Molecular Clock**



### **Asymmetric Line Profile due to Baseline Tilting**



### 1<sup>st</sup> Order Dispersion Curve w/ Baseline Tilting



### High Order Dispersion Curve w/ Baseline Tilting



point under PVT

Eliminated by high order
 Invariant zero-cross derivative, V<sub>offset</sub> ≈ 0
 point under PVT

### Idea: CSMC with High-Order Locking



- Simulation: 0.1dB/GHz baseline tilting  $\rightarrow$  a frequency drift of:
  - 5×10<sup>-9</sup> for 1<sup>st</sup> order locking
  - 3×10<sup>-10</sup> for 3<sup>rd</sup> order locking
- This work: a chip-scale
   molecular clock (CSMC) locking
   to high order dispersion curve

### Outline

- Background
- High-order locking for long-term stabilization
- Architecture and circuit design
- Measurement results
- Conclusions

#### **System Architecture**



#### **TX: 231GHz Cascaded Two-Stage PLL**





- Freq. tunability: ~1% of line width  $f_{FWHM}$
- 27GHz (12%) bandwidth for line coverage
- Precise wavelength modulation (WM)
  - $\Delta f/f_{\rho} \approx 10^{-5} (\Delta f \approx 2.5 \text{MHz}, f_{\rho} = 231.06 \text{GHz})$

### TX PLL2: 57.77GHz VCO and 231GHz Quadrupler



- Varactor 1: highly-sensitive for large PLL bandwidth
- Varactor 2: low sensitivity for wavelength modulation
  - $KVCO_{Varactor 1} / KVCO_{Varactor 2} \approx 10^3$

-6

-200

-100

200

Simulated

 $V_m$  (mV)

WM response

100

### **TX: Wavelength Modulator (WM)**



#### **RX: THz Detector and VGA**





- Sub-threshold NMOS pair → low noise THz square-law detector
- 2-stage variable gain amplifier
  - 65dB max gain / 10-bit control
  - AC coupled / monolithic integrated

## **RX: Harmonic Rejection Lock-in Detector (HRLKD)**







- Convert  $N^{\text{th}}$  harmonic of  $f_m$  to DC
- Harmonic rejection of ref. clock f<sub>ref</sub> for low interference and noise-folding
- Reduce flicker noise at DC output

### **RX: Harmonic Rejection Lock-in Detector (HRLKD)**



### **Chip-to-Waveguide Coupler**





E-plane quartz probe [C. Wang, et al., *JSSC*, 2018]



 $V_m$  (f<sub>m</sub>=100kHz) THz detector 231GHz PLL2 WW Coupler Coupler 4 · N · f<sub>m</sub> HRLKC PLL1 VCXO RF in RF out Lock-in out 60MHz **TXTAL** V<sub>LK.N</sub> Gas cell Gas cell



Integrated dipole coupler

[H. Song, et al., MWCL, 2016]

- Conventional designs
  - Costly external components
  - Special process/wafer thinning
  - Insufficient TRX isolation

#### **Slot Array Coupler: Architecture**



#### **Slot Array Coupler: Simulated Results**



isolation

• BW<sub>3dB</sub> = 21%

(removable w/ calibration)

### Outline

- Background
- High-order locking for long-term stabilization
- Architecture and circuit design
- Measurement results
- Conclusions

### **Chip Photo and Packaging**



• TSMC 65nm CMOS process.



#### **Measured RF Power and Phase Noise of TX**



- *P<sub>RF</sub>* = -9.4dBm w/ slot array coupler
- PLL bandwidth: 27GHz (12%)

- Phase noise : -81.5dBc/Hz@1MHz
- PM-to-AM noise  $\rightarrow$  SNR<sub>PN</sub>= 84dB

#### **Measured WMS Spectrum and RX Performance**



with wavelength modulation

62.8 pW/ $\sqrt{\text{Hz}}$  at  $f_m$ =100kHz

#### **Measured Dispersion Curves and Allan Deviation**



#### Measured Allan Deviation by 3<sup>rd</sup> Order Locking



#### **Measured Temperature and Magnetic Sensitivity**



 Drift < ± 3×10<sup>-9</sup> in 27~65 °C w/ 2<sup>nd</sup> order temperature compensation  Drift < ± 2.9×10<sup>-12</sup>/Gauss w/o magnetic shield in CSAC

### Outline

- Background
- High-order locking for long-term stabilization
- Architecture and circuit design
- Measurement results
- Conclusions

### **Performance Comparison Table**

| Parameters                | SiTime [1]            | Microsemi [3]                 | ISSCC2019 [4]          | VLSI2018 [5]                                       | This work                                          |
|---------------------------|-----------------------|-------------------------------|------------------------|----------------------------------------------------|----------------------------------------------------|
| Mechanism                 | OCXO                  | <sup>133</sup> Cs CSAC        | <sup>133</sup> Cs CSAC | <sup>16</sup> O <sup>12</sup> C <sup>32</sup> S MC | <sup>16</sup> O <sup>12</sup> C <sup>32</sup> S MC |
| Cost                      | Medium                | High                          | High                   | Low                                                | Low                                                |
| Freq. (GHz)               | 0.06                  | 4.6                           | 4.6                    | 231.061                                            | 231.061                                            |
| Harmonics                 | N/A                   | 1 <sup>st</sup> order         | 1 <sup>st</sup> order  | 1 <sup>st</sup> order                              | 3 <sup>rd</sup> order                              |
| $\sigma_y(\tau=10^0 s)$   | 3.0×10 <sup>-11</sup> | 3.0×10 <sup>-10</sup>         | 8.4×10 <sup>-11</sup>  | 2.4×10 <sup>-9</sup>                               | 3.2×10 <sup>-10</sup>                              |
| $\sigma_y(r=10^3 s)$      | 4.0×10 <sup>-11</sup> | 1.0×10 <sup>-11</sup>         | 0.8×10 <sup>-11</sup>  | 3.8×10 <sup>-10</sup>                              | 4.3×10 <sup>-11</sup>                              |
| Temp. Drift <sup>a</sup>  | ±5.0×10 <sup>-9</sup> | ±5.0×10 <sup>-10</sup>        | <±1.0×10 <sup>-9</sup> | N/A                                                | ±3.0×10 <sup>-9</sup>                              |
| Mag. Sens. <sup>b</sup>   | N/A                   | <b>±9.0×10</b> <sup>-11</sup> | N/A                    | N/A                                                | <b>±2.9×10</b> <sup>-12</sup>                      |
| T <sub>start-up</sub> (s) | 120                   | 180                           | N/A                    | <1                                                 | <1                                                 |
| P <sub>DC</sub> (mW)      | 600                   | 120                           | 60                     | 66                                                 | 70                                                 |

a. Measured temp. range: [1]: -20~70°C; [2], [3]: -10~70°C; This Work: 27~65°C;

b. Unit: Gauss<sup>-1</sup>.

[1] SiTime, *SiT5711*, 2019;
[2] D. Ruffieux, *ISSCC*, 2011;
[3] Microsemi, *SA.45s*, 2019;
[4] H. Zhang, *ISSCC*, 2019;
[5] C. Wang, *VLSI*, 2018.

### Acknowledgement

- This work is supported by National Science Foundation (CAREER ECCS-1653100 and ECCS-1809917), MIT Lincoln Lab, Jet Propulsion Lab (NASA), and a Texas Instruments Fellowship;
- The authors acknowledge Dr. Stephen Coy, Prof. Keith Nelson, and Prof. Robert Field of MIT for technical discussions and assistance;
- We appreciate the help from Qingyu (Ben) Yang on the experiments.





Jet Propulsion Laboratory California Institute of Technology

#### **Demo Session 1**





#### **Please Rate This Paper**

RATE PAPER