A Terahertz FMCW Comb Radar in 65nm CMOS with 100GHz Bandwidth

Xiang Yi¹, Cheng Wang¹, Muting Lu¹, Jinchen Wang¹, Jesus Grajal^{1,2}, and Ruonan Han¹

¹Massachusetts Institute of Technology, Cambridge, MA, USA

²Universidad Politécnica de Madrid, Madrid, Spain

Outline

- Introduction
- Comb Radar
- Circuit Implementations
- Measurement Results
- Conclusion

Outline

- Introduction
- Comb Radar
- Circuit Implementations
- Measurement Results
- Conclusion

Wideband FMCW Radar Applications

4.8: A Terahertz FMCW Comb Radar in 65nm CMOS with 100GHz Bandwidth

© 2020 IEEE International Solid-State Circuits Conference

Wideband THz FMCW Radar Example

- SAR 3D imaging
- Cross-range resolution ΔCR
 - Relies on synthetic aperture D
 - Mm resolution is readily available (e.g. R=3D, $\Delta CR=1.5$ mm)
- Range resolution ΔR
 - Relies on bandwidth *BW* only
 - Mm resolution: wideband (e.g. BW=100GHz, △R=1.5mm,)

300GHz Radar Imaging for Non-Destructive Detection of Material Defects

Integrated Radar Survey

- CMOS radar is desired
 - Low cost
 - Integration with analog and digital circuits
- Bandwidth of CMOS radars is limited
- Wideband FMCW radar
 issues
 - Performance fluctuation
 - Chirp signal generation

Outline

- Introduction
- Comb Radar
- Circuit Implementations
- Measurement Results
- Conclusion

Comb Radar Concept

- Divide a single wideband channel into N narrowband channels
- Make these N channels operate simultaneously
- Multi-tone operation looks like a comb

Comb Radar System Diagram

Phase of IF Signals

Phase of IF Signals

The phases of adjacent IF signals are continuous despite of their initial phases

Stitching Process

• IF signals are directly stitched in time domain after calibrations

Compared with Single Channel Radar

Flatter frequency responses

• More linear chirp signal

• Finer velocity resolution

$$\Delta \upsilon = \frac{\lambda}{2NT_{frame}}$$

• SNR is improved

4.8: A Terahertz FMCW Comb Radar in 65nm CMOS with 100GHz Bandwidth

© 2020 IEEE International Solid-State Circuits Conference

Outline

- Introduction
- Comb Radar
- Circuit Implementations
- Measurement Results
- Conclusion

Comb Radar System Diagram

- Total bandwidth: 5×20GHz=100GHz
- Scalable bandwidth extension
- Single antenna solution for each transceiver: 5 antennas, coupling?

On-Chip Antenna Background

	Slot Antenna	Patch Antenna	Substrate Integrated Waveguide (SIW)	
Expensive Silicon Lens	Need 🙁	No Need 🙂	No Need 😊	
Bandwidth	Wide 😊	Narrow 🙁	Narrow 🙁 🤰	
Inter-Antenna Coupling	Medium 😊	Large 🙁	Small 😊	
Example	CMOS chipImage: Chip pSilot Antennas[R. Han, ISSCC 2012]	[R. Han, JSSC 2013]	01&02 () () () () () () () () () ()	

© 2020 IEEE International Solid-State Circuits Conference 4.8: A Terahertz FMCW Comb Radar in 65nm CMOS with 100GHz Bandwidth

SIW Cavity and Slot

• Eigenmode simulation

SIW Cavity with Orthogonal Slots

• Four modes

SIW Orthogonal Slot Antenna

- Multiple resonant modes due to orthogonal slots in SIW cavity
- Tune size parameters to arrange mode frequencies

SIW Orthogonal Slot Antenna

- Wide bandwidth (~40GHz, 14.8%)
- 0dBi peak gain

- Low coupling (< -31dB)
- 20.5% efficiency
- Linear polarization (axial ratio > 11.6dB)

25

Input Multiplier, Buffer, and SSB Mixer

Doubler1 and Folded Slot Balun

Folded Slot Balun

- Nearly perfect differential output
 - 50GHz (45%) bandwidth
 - 1.3dB insertion loss
 - 0.05dB/0.5° amplitude/phase errors

Cascaded Neutralized Amplifier

Doubler2

4.8: A Terahertz FMCW Comb Radar in 65nm CMOS with 100GHz Bandwidth

Multi-Stub Matching Network

Receiver

Outline

- Introduction
- Comb Radar
- Circuit Implementations
- Measurement Results
- Conclusion

Chip and PCB Photograph

- TSMC 65nm bulk CMOS technology
- Area: 2.5mm by 2.0mm
- Total power consumption: 840mW

Transmitter Mode Measurement

- Total EIRP without lens: 0.6dBm
- Total EIRP with lens: 20dBm
- Fluctuations: within 8.8dB

20

Fluctuations I

Transmitter Mode Measurement

- Friis equation is met at far-field
- Antenna radiation pattern 3dB beamwidth: 90°
- Phase noise: better than -100dBc/Hz @1MHz

Receiver Mode Measurement

- Minimum SSB NF including antenna loss: 22.8dB
- Fluctuation of NF: 14.6dB

FMCW Radar Measurement Setup

4.8: A Terahertz FMCW Comb Radar in 65nm CMOS with 100GHz Bandwidth

Radar Signal Calibration

- Amplitude mismatch
 - Gain mismatch among channels
- Phase mismatch
 - Matching network delay mismatch: fixed
 - Antenna off-axis: range should be large (>20cm)
- Calibration method [J. Grajal, TMTT 2015]
 - Reference: one single-point like target
 - One-time calibration

Range Accuracy Measurement

Measured distance matches real distance

Range Resolution Measurement

- Two targets with 2.5mm distance
- Hamming window
- One channel
- 20GHz

Range Resolution Measurement

- Three channels
- 60GHz

Range Resolution Measurement

- Five channels
- 100GHz

Comparison Table

References	This Work	JSSC 2014 [1]	Trans. THz 2016 [2]	Trans. THz 2018 [3]	T-MTT 2019 [4]	ISSCC 2019 [5]
Technology	65nm CMOS	65nm CMOS	130nm SiGe	130nm SiGe	55nm SiGe	28nm CMOS
Frequency (GHz)	220~320	157.9~164.9	210~270	305~375	189.9~252.3	138~151
Bandwidth (GHz)	100	7	60	70	62.4	13
Resolution (mm)	1.5	21	2.5	2.1	2.4	11.5
Output EIRP (dBm)	0.6, 20 ^(a)	18.8	32.8 ⁽¹⁾	6, 18.4 ^(a)	14 ¹⁰	11.5
Minimum Noise Figure (dB)	22.2 ^(c)	22.5	21	19.7	NA	4(EINF)(a)
Power/NF Fluctuation (dB)	8.8/14.6	3/NA	20/29	10.5/28.6	7.7/NA	1.5/4
Chip Size (mm ²)	5.0	20	3.2	2.85	0.51	6.5
DC Power (mW)	840	2200	1800	1700	87	500

(a) With TPX focus lens; (b) with silicon lens; (c) includes antenna and baseband; (d) effective isotropic NF which includes the antenna directivity.

Outline

- Introduction
- Comb Radar
- Circuit Implementations
- Measurement Results
- Conclusion

Conclusion

- Comb radar for wideband THz applications
 - Flatter frequency responses
 - More linear chirp signal
 - Finer velocity resolution
 - Improved SNR
 - Scalable bandwidth extension

 A five channel comb radar with 100GHz bandwidth was demonstrated in 65nm bulk CMOS technology

Acknowledgements

- Chip fabrication: TSMC University Shuttle Program
- Measurements: Prof. Charlie Sodini, Prof. Tomás Palacios, Qingyu Yang, Mohamed I. Ibrahim, and Nathan Monroe (MIT); Pu Wang, and Rui Ma (Mitsubishi Electric Research Labs)
- Funding: NSF CAREER award (ECCS-1653100), MIT Center of Integrated Circuits and Systems (CICS), and a gift fund from TSMC

Please Rate This Paper

RATE PAPER