THzID: A 1.6mm² Package-Less Cryptographic Identification Tag at 260GHz

Mohamed I. Ibrahim, Muhammad Ibrahim Wasiq Khan, Chiraag S. Juvekar, Wanyeong Jung, Rabia T. Yazicigil, Anantha P. Chandrakasan, and Ruonan Han

Massachusetts Institute of Technology Cambridge, MA, USA

Outline

- Introduction
- 260GHz Package-Less Cryptographic THzID
 - 260GHz Backscattering Module
 - Downlink Circuitry
 - Optical-Power Harvesting
 - Cryptographic Processor
- Measurement Results
- Conclusion

Radio Frequency Identification (RFID) Tags

• RFIDs are used in ID cards, supply chain, authentication and other applications

Radio Frequency Identification (RFID) Tags

• RFIDs are used in ID cards, supply chain, authentication and other applications

Cryptographic Package-Less THzID

THz frequency → Small antenna size

Antenna array → Increase gain & Beam-steering

Fully passive and compact communication module

Tightly integrated photovoltaic cells for powering

Cryptographic processor for authentication

Outline

- Introduction
- 260GHz Package-Less Cryptographic THzID
 - 260GHz Backscattering Module
 - Downlink Circuitry
 - Optical-Power Harvesting
 - Cryptographic Processor
- Measurement Results
- Conclusion

Multi-Functional Patch Antenna

- Equal power splitting between mixer and detector
- Orthogonal polarization of the RX and TX modes resulting in 25dB rejection for the reflection from the surrounding

© 2020 IEEE International Solid-State Circuits Conference

29.8: THzID: A 1.6mm² Package-Less Cryptographic Identification Tag at 260GHz

Frequency-Shifting Backscattering Module

- The uplink data rate is 2kb/s
- Changing the LO phase (Φ) allows for beam-steering

Frequency-Shifting Backscattering Module

Differential Slot Balun Performance

• Diff. to common mode isolation is 10dB

260GHz Square-Law Detector

- RF+ and RF- are coming from two antennas facing each other
- Photodiode is used for biasing
- Responsivity ≈ 1kV/W, and NEP ≈ 32pW/√Hz

Ultra-Low Power Amplifier Chain

Optical-Power Harvesting

- N+/P-well/Deep-N-well diode is used to create an isolated anode terminal
- The simulated light transmission through the antenna fishnet pattern is 22%

Communication Protocol

Cryptographic Processor

 Elliptic curve cryptography (ECC) with 22% lower area and 18% lower cycle count compared to state-of-the-art

Outline

- Introduction
- 260GHz Package-Less Cryptographic THzID
 - 260GHz Backscattering Module
 - Downlink Circuitry
 - Optical-Power Harvesting
 - Cryptographic Processor
- Measurement Results
- Conclusion

Chip Micrograph

TSMC 65nm CMOS process

29.8: THzID: A 1.6mm² Package-Less Cryptographic Identification Tag at 260GHz

Measurement Setup

Chip Testing Setup Photograph

260GHz Front-End Performance

Measured Backscattered Spectrum

Measured Downlink Data

Beam-Steering Measurements

• Backscattered signal detected by the reader at non-perpendicular positions by sweeping the angle (θ)

Measured Time Domain Communication

Light Powering Performance

Chip Testing Setup Photograph with LED Torch Chip Start-up with Light Power

Power Budget Breakdown

Outline

- Introduction
- 260GHz Package-Less Cryptographic THzID
 - 260GHz Backscattering Module
 - Downlink Circuitry
 - Optical-Power Harvesting
 - Cryptographic Processor
- Measurement Results
- Conclusion

Performance Comparison

References	Process	Carrier Frequency (GHz)	Data Rate	Peak Power	Security	Range	Beam- Steering	Area (mm²)
This Work	65nm	260	DL:100kbps UL:2kbps	21µW	Yes (Elliptic Curve)	5cm	Yes	1.6
ISSCC'17 [1]	180nm	0.915	DL:62.5kbps UL:30.3kbps	2mW	No	20m	No	9*
ISSCC'18 [2]	65nm	5.8	DL:5Mbps UL:4kbps	10µW		1mm		0.01
VLSI'14 [3]	65nm	DL:24 UL:60	DL:6.5Mbps UL:1.2Mbps	11mW**		50cm		4.4
ISSCC'16 [4]	130nm	0.433	125kbps	16µW	Yes (Symmetric)	5mm		64***

* Volume is 27mm³

** Calculated data according to [1]

*** The area includes off-chip antenna (chip area is 0.8x0.8mm²)

[1] L. Chuo, et al., *ISSCC*, 2017.
[2] B. Zhao, et al., *ISSCC*, 2018.
[3] M. Tabesh, et al., *VLSI*, 2014.
[4] C. S. Juvekar, et al., *ISSCC*, 2016.

Acknowledgement

National Science Foundation (SpecEES ECCS-1824360)

• Virginia Diodes Inc. (VDI) for providing testing instruments

• Prof. Donhee Ham and Dr. Houk Jang at Harvard University for their support during the testing

 Prof. Nicholas Fang and Xinhao Li at MIT for their support during the testing

Please Rate This Paper

RATE PAPER