

A 3.4–4.6GHz In-Band Full-Duplex Front-End in CMOS Using a Bi-Directional Frequency Converter

Xiang Yi¹, Jinchen Wang¹, Cheng Wang^{1,2}, Kenneth E. Kolodziej³, Ruonan Han¹

¹Massachusetts Institute of Technology, Cambridge, MA ²Analog Devices, Boston, MA

³Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, MA

2

- Introduction
- Bi-Directional Frequency Converter: Concept
- Circuit Implementation
- Measurement Results
- Conclusion

- Introduction
- Bi-Directional Frequency Converter: Concept
- Circuit Implementation
- Measurement Results
- Conclusion

In-Band Full-Duplex (IBFD)

RFIC

- Compared with half-duplex, IBFD
 - -Doubles the spectral capacity
 - -Simplifies transmission protocols
- Nonreciprocal circulator is critical for IBFD
 - -Conventional ferrite circulator with magnetic material is bulky
 - -On-chip magnetic-free circulator is promising

[N. Reiskarimian, et al., Nat. Comm. 2016]

[T. Dinc, et al., Nat. Comm. 2017]

International Microwave Symposium

 $\langle \Phi \rangle$

Circulator in an Integrated IBFD System

5

Circulator in an Integrated IBFD System

- Isolation of circulator is limited by
 - -Anti-phase signal cancellation: narrow bandwidth, sensitive to mismatch

Circulator in an Integrated IBFD System

- Isolation of circulator is limited by
 - -Anti-phase signal cancellation: narrow bandwidth, sensitive to mismatches
 - -ANT impedance mismatch: common issue, addressed by the impedance tuner

Circulator in an Integrated IBFD System

- Isolation of circulator is limited by
 - -Anti-phase signal cancellation: narrow bandwidth, sensitive to mismatches
 - -ANT impedance mismatch: common issue, addressed by the impedance tuner
 - -On-chip coupling: silicon substrate, power lines, magnetic crosstalk

- Bi-directional frequency converter with HPF (LPF) at TX (RX)
- Direction-independent downconversion
- $\omega_{TX} \neq \omega_{RX}$: no on-chip coupling

🔘 IMS

Introduction

- Bi-Directional Frequency Converter: Concept
- Circuit Implementation
- Measurement Results
- Conclusion

Bi-Directional Frequency Converter (BDFC)

 Four parallel paths of modulated switches in series with phase shifters

<u>M</u>IMS

11

International Microwave Symposium

International Microwave Symposium

RFIC

Bi-Directional Frequency Converter (BDFC)

- Four parallel paths of modulated switches in series with phase shifters
- BDFC is essentially a passive SSB mixer

<u>o</u> ins

Bi-Directional Frequency Converter (BDFC)

Mo1C - 3

- What happen if the signal direction reverses?
- Phasor diagram will be used to analyze the operation

RFIC

Phasors from TX to ANT

14

Features of the BDFC-Based IBFD Front-End

TX0-

RX^{o-}

- $\omega_{TX} \neq \omega_{RX}$: no on-chip coupling
- Not anti-phase signal cancellation: isolation is wideband and robust against device mismatch and non-ideal clocking
- One set of switches: high linearity
- Receiver down-mixing function
- Simple structure: compact area

Bi-Directional Frequency Converter

 $\varphi_{\rm M}=0^{\circ}$

Δφ

16

International Microwave Symposium

- Introduction
- Bi-Directional Frequency Converter: Concept
- Circuit Implementation
- Measurement Results
- Conclusion

Full Schematic of IBFD Front-End

Lumped Lange Quadrature Coupler

- Four 2.5-turn inductors are coupled together: compact area
- Conversion loss: 0.7 dB at 4 GHz

RFIC

Lumped Lange Quadrature Coupler

- Four 2.5-turn inductors are coupled together: compact area
- Conversion loss: 0.7 dB at 4 GHz
- At ($\omega_{TX} + \omega_{M}$), partially suppressed by band-pass characteristic

- Measurement Results

Die Photo

- Low cost 65-nm bulk CMOS technology
- Compact core area: 0.72 mm by 0.37 mm

Mo1C - 3

22

¥

ANT to RX

Signal

- Mo1C 3

23 International Microwave Symposium

- ANT, TX and LO: probing
- RX balun: on PCB

GSG

LO GSG

PNA-X

N5245B

TX to RX

<u>M</u>IMS

IBFD Front-End Measurement Results

• TX-ANT Insertion Loss: 3 dB

• ANT-RX Insertion Loss: 3.2 dB

IBFD Front-End Measurement Results

- TX-RX Isolation: 44.2~25.5 dB
- A 50 Ω load instead of an impedance tuner is used

RX Sideband Frequency (MHz)

- ANT-RX Noise Figure (TX off/on): 5.8/5.9 dB
- Receiver works in full-duplex mode

IBFD Front-End Measurement Results

 Demonstrate our structure with only one set of switches in the signal path has high linearity

Comparison Table - 1

\frown	
\square	
RFIC	

	This work	RFIC2019 [1]	JSSC2017 [2]	RFIC2018 [3]	JSSC2017 [4]	ISSCC2019 [5]
Technology	65-nm CMOS	40-nm CMOS	65-nm CMOS	180-nm SOI	45-nm SOI	45-nm SOI
Frequency (GHz)	3.4~4.6	5.6~7.4	0.65~0.85	0.86~1.08	22.7~27.3	50~56.8
Fractional Bandwidth	30%	28%	26.70%	17%	18%	14.60%
Isolation (dB)	25.5	18	15	25	18.5	20
TX-ANT/ANT-RX Insertion loss (dB)	3.0/3.2	2.2/2.2	1.7/1.7	2.1/2.9	3.3/3.2	3.6/3.1
Noise Figure (dB)	5.8/5.9 ^(a)	2.4	4.3	3.2	3.3	3.2
TX-ANT/ANT-RX IIP3 (dBm)	29.5/27.6	17.5/17.5	27.5/8.7	50/30.7	20.1/19.9	19.4/19.0
On-Chip TX-RX Coupling	No	Yes	Yes	Yes	Yes	Yes
Down-Mixing for RX	Yes	No	Yes	No	No	No
Fully Integrated	Yes	Yes	No	Yes	Yes	Yes
Power Consumption (mW)	48	12.4	59	170	78.4	41
Core Area (mm ²)	0.27	0.45	25	16.5	2.16	1.72

^(a) With TX off/on (0 dBm) and the homodyne RX down-conversion function included.

Comparison Table - 2

- [1] A. Ruffino, Y. Peng, F. Sebastiano, M. Babaie, and E. Charbon, "A 6.5-GHz cryogenic all-pass filter circulator in 40-nm CMOS for quantum computing applications," in *IEEE RFIC Symposium*, 2019, pp. 107–110.
- [2] N. Reiskarimian, J. Zhou, and H. Krishnaswamy, "A CMOS passive LPTV nonmagnetic circulator and its application in a full-duplex receiver," *IEEE J. Solid-State Circuit*, vol. 52, no. 5, pp. 1358–1372, 2017.
- [3] A. Nagulu, A. Alu, and H. Krishnaswamy, "Fully-integrated non-magnetic 180nm SOI circulator with > 1W P1dB,
 >+50dBm IIP3 and high isolation across 1.85 VSWR," in *IEEE RFIC Symposium*, vol. 2018-June, 2018, pp. 104–107.
- [4] T. Dinc, A. Nagulu, and H. Krishnaswamy, "A millimeter-wave non-magnetic passive SOI CMOS circulator based on spatio-temporal conductivity modulation," *IEEE J. Solid-State Circuits*, vol. 52, no. 12, pp. 3276–3292, 2017.
- [5] A. Nagulu and H. Krishnaswamy, "Non-magnetic 60GHz SOI CMOS circulator based on loss/dispersionengineered switched bandpass filters," in *Intl. Solid-State Circuits Conf.*, vol. 63, 2019, pp. 446–448.

29

- Introduction
- Bi-Directional Frequency Converter: Concept
- Circuit Implementation
- Measurement Results
- Conclusion

Conclusion

- A new nonreciprocity concept using frequency conversion is proposed
 - $-\omega_{TX} \neq \omega_{RX}$: no on-chip coupling
 - Not anti-phase signal cancellation: isolation is wideband and robust against device mismatch and non-ideal clocking
 - -One set of switches: high linearity
 - -Receiver down-mixing function
 - -Simple structure: compact area
- A 4-GHz CMOS prototype demonstrated our idea: wide bandwidth, high isolation, high linearity, compact area

Acknowledgments

- The authors thank Keysight for their support of testing equipment.
- This work was supported by Lincoln Laboratory (FA8702-15-D-0001).

