

A 0.31THz CMOS Uniform Circular Antenna Array Enabling Generation/Detection of Waves with Orbital-Angular Momentum

M. I. W. Khan¹, J. Woo¹, X. Yi^{1,2}, M. I. Ibrahim¹, R. T. Yazicigil³, A. P. Chandrakasan¹ and R. Han¹

¹Massachusetts Institute of Technology, Cambridge, MA, USA ²South China University of Technology, Guangzhou, China ³Boston University, Boston, MA, USA

Tu03G-HH675

- Introduction
- Applications and Prior Works
- 0.31THz OAM CMOS Generation/Detection
 - System architecture
 - 0.31THz Reconfigurable Pixel
 - 0.31THz Amplifier-Multiplier Chain
 - Controller and Key-to-OAM mapping
- Measurement Results
- Conclusion

 Orbital Angular Momentum (OAM) An OAM-based wave possesses a wavefront with a helical phase distribution around the central axis of the beam

$$|E| = A_o J_l(k_t \rho) e^{\left(\frac{-\rho^2}{w_{BG}^2}\right)} e^{\left(-jm\phi\right)} e^{\left(-jkz\right)} \qquad \text{Ref. [1]}$$

 $m = 0, \pm 1, \pm 2, \dots$ represents OAM modes

INS 6 - 11 June 2021, Atlanta, G

Applications

RFIC

- Enhanced spectral efficiency
 - Orthogonal modes support spatial multiplexing/demultiplexing

400Gbps using 4-OAM modes at single wavelength [2] Science 2013

100Gbps using 5-OAM modes at 28GHz [3] Microwave Journal 2018

Applications

- Physical-layer security for wireless channels
 - Require multiple phase-comparing antennas or colluding eavesdroppers

5

- Physical-layer security for wireless channels
 - Require multiple phase-comparing antennas or colluding eavesdroppers

Eve with two phase-comparing antennas

Unsecure area with $L_1 = L_2$, $r_1 = r_2$, $\beta = 15^{\circ}$

6

Discrete Systems for Generation/Detection of OAM

Tu03G-HH675

[4] Adv. Optics and Photonics 2011

3. Circular Antenna Array

[6] NTT Technical Review 2018

2. Holographic Gratings

[5] Science Report 2017

[7] NEC News 2020

International Microwave Symposium

MS 6 - 11 June 2021, Atlanta, GA

- Introduction
- Applications and Prior Works
- 0.31THz OAM CMOS Generation/Detection
 - System architecture
 - 0.31THz Reconfigurable Pixel
 - 0.31THz Amplifier-Multiplier Chain
 - Controller and Key-to-OAM mapping
- Measurement Results
- Conclusion

SSCS S

System Architecture

9

System Architecture (Tx Mode)

SSCS E

System Architecture (Rx Mode)

 $\langle \Phi \rangle$

Í SSCS Ì

310GHz Reconfigurable Pixel

ㅋㅋ

310GHz Reconfigurable Pixel (Tx Mode)

310GHz Reconfigurable Pixel (Rx Mode)

310GHz Amplifier-Multiplier Chain

310GHz Amplifier-Multiplier Chain

EM Simulation of OAM Modes

18

- Introduction
- Applications and Prior Works
- 0.31THz OAM CMOS Generation/Detection
 - System architecture
 - 0.31THz Reconfigurable Pixel
 - 0.31THz Amplifier-Multiplier Chain
 - Controller and Key-to-OAM mapping
- Measurement Results
- Conclusion

Chip Micrograph and Power Consumption

TSMC 65nm CMOS Process

Power Consumption Breakdown

Tx Mode \rightarrow 154mW Rx Mode \rightarrow 166mW

Measurement Setups

Intensity Profiles and Tx Mode-checking

Measured intensity distribution for m=+1 and m=(+1)+(-1) OAM modes

333

Tu03G-HH675

Measured spectrums when Tx chip is m=+1 and Rx SPP is m=+1 and -1

International Microwave Symposium 22

-81.24 dB

Time-domain Tx OAM Mode-checking

Time-domain OAM mode-checking setup with 1m Tx-Rx distance

Time-domain output of the Rx configured to respond to different OAM modes, when it is illuminated by the same OAM sequence (1Mbps) generated by on-chip Keccak

Rx Mode-checking and Tx-Rx Characterization

International Microwave Symposium

6 - 11 June 2021, Atlanta, GA

24

Measured spectrum of combined IF when OAM modes are matched and unmatched

 $\langle \phi \rangle$

Í SSCS Ì

CMOS Tx-Rx OAM Link

Full-silicon OAM link and sensitivity to co-axial alignment

- Introduction
- Applications and Prior Works
- 0.31THz OAM CMOS Generation/Detection
 - System architecture
 - 0.31THz Reconfigurable Pixel
 - 0.31THz Amplifier-Multiplier Chain
 - Controller and Key-to-OAM mapping
- Measurement Results
- Conclusion

Comparison with RF and mm-Wave OAM Prototypes based on Discrete Components

	Nature Comm. '14 [8]	Wireless Comm. '17 [9]	IICCW '20 [10]	This work
Implementation	Discrete Transceivers + SPP + Quasi-Optical Beam Combiner	Active-Driven Antenna Arrays + Parabolic Reflectors	Active-Driven Antenna Arrays	Active-Driven Antenna Array on a 65nm CMOS Chip + Teflon Lens
Frequency (GHz)	28	10	40	310
OAM Modes	±1, ±3	±2, ±3	0, ±1, ±2, ±3	0, +1, -1, ±1
Data Modulation	16QAM/Mode Dual Polarization	32QAM on each mode, Full Duplex	256QAM/Mode Dual Polarization	Bit-to-Mode OAM Hopping
Radiated Power (dBm)	8	0	11.5	-4.8 (EIRP)
Antenna Aperture Diameter (cm)	30	60	120	1.35
Application	Enhanced Spectral Efficiency	Enhanced Spectral Efficiency	Enhanced Spectral Efficiency	Physical-Layer Security
DC Power (mW)	N/A	N/A	N/A	154 (Tx), 166 (Rx)

- This work is supported by National Science Foundation EAGER SARE award
- Prof. Yang Yang at University of Technology, Sydney for the spiral phase plates

- 1. L. Allen, M. Padgett, and M. Babiker, "The orbital angular momentum of light," ser. Progress in Optics, E. Wolf, Ed. Elsevier, 1999, vol. 39, pp. 291–372.
- 2. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, "Terabit-scale orbital angular momentum mode division multiplexing in fibers," Science, vol. 340, no. 6140, pp. 1545–1548, 2013.
- 3. <u>https://www.microwavejournal.com/articles/30341-ntt-successfully-demonstrates-100-gbps-wireless-transmission-using-oam-multiplexing-for-the-first-time</u>
- 4. Alison M. Yao and Miles J. Padgett, "Orbital angular momentum: origins, behavior and applications," Adv. Opt. Photon. 3, 161-204 (2011)
- 5. Zheng, S., Wang, J. "Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings," Sci Rep 7, 40781 (2017)
- 6. <u>https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201905fa5.html</u>
- 7. https://www.nec.com/en/press/202003/global_20200310_01.html
- Y. Yan, X. Guodong, L. Martin P. J., H. Hao, A. Nisar, B. Changjing, R. Yongxiong, C. Yinwen, L. Long, Z. Zhe, M. A. T. Moshe, P. Miles J., and W. Alan E., "High-capacity millimetre-wave communications with orbital angular momentum multiplexing," Nature Comm., Sep. 2014.
- 9. W. Zhang, S. Zheng, X. Hui, R. Dong, X. Jin, H. Chi, and X. Zhang, "Mode division multiplexing communication using microwave orbital angular momentum: An experimental study," IEEE Transactions on Wireless Communications, vol. 16, no. 2, pp. 1308–1318, 2017.
- 10. H. Sasaki, Y. Yagi, T. Yamada, T. Semoto, and D. Lee, "An experimental demonstration of over 100 Gbit/s OAM multiplexing transmission at a distance of 100 m on 40 GHz band," in 2020 IEEE International Conference on Communications Workshops, 2020, pp. 1–6.

Thank you!

Tu03G-HH675

