4.5: Electronic THz Pencil Beam Forming and 2D Steering for High Angular-Resolution Operation: A 98×98 Unit, 265GHz CMOS Reflectarray with In-Unit Digital Beam Shaping and Squint Correction

<u>Nathan M. Monroe¹, Georgios C. Dogiamis², Robert Stingel²,</u> Preston Myers², Xibi Chen¹, Ruonan Han¹

¹Massachusetts Institute of Technology, Cambridge, MA ²Intel Corporation, Chandler, AZ

intel

Speaker Bio: Nathan Monroe

Education

- S.B., MIT EE | 2013
- M. Eng. MIT EE | 2017
- Ph.D., MIT EE | 2021

Professional Experience

 Microsoft Xbox Sensor Development 2013-2015

Research Interests

- THz antenna arrays
- THz radar

Sensing in Autonomous Vehicles

- Vision is key for autonomous vehicles
- From object detection to recognition

- ✓ High angular resolution
- ✗ High cost
- Mechanical scanning
- Poor robustness to weather

- ✓ Low cost, long range
- ✓ All-weather operation
- Low 2D angular resolution
- × Large size

MIMO Radar: Practicality Issues

- Low cost, long range
- ✓ All-weather operation
- ✓ Small size
- Low 2D angular resolution
- Clutter issues
- Interference concerns

[Mietzner 2017]

Imaging Radar: The Case for THz

100x100px image → 1° beam

Imaging Radar: The Case for THz

THz Array: Implementation Challenges

RF Power Distribution

- × High loss
- Routing complexity/congestion
- > Phase synchronization

Phase control issues

THz Phase Shifter Limitations

- Insertion Loss ~10dB
- Power ~ 10mW
- Size $\rightarrow \lambda/2$ footprint
- Phase/Amplitude errors
- Narrowband
- One-directional

Yang et al, MTT 2015

Jalili et al, JSSC 2019

Reflectarray: A Reconfigurable Mirror

- Feed antenna radiates energy onto antenna array
- Elements receive, phase shift, radiate
- Advantages over phased array
 - Reduced distribution losses
 - Phase synchronization
 - No complex RF routing

CMOS Reflectarray

One Bit Phase Shifter Concept

Quantize phase to 0° or 180°

- Two passive FET switches
- Feed opposing sides of antenna
- Tradeoffs: switch sizing
 - Insertion loss vs isolation

One Bit Phase Shifter Considerations

- ✓ No static DC power
- ✓ Low THz loss ~3dB
- ✓ Small area >10x10 µm²
- ✓ No phase/amplitude errors
- × Phase quantization \rightarrow sidelobes

One Bit Reflectarray

© 2022 IEEE International Solid-State Circuits Conference

One Bit Reflectarray: Sim. Radiation

© 2022 IEEE International Solid-State Circuits Conference

^{4.5:} Electronic THz Pencil Beam Forming and 2D Steering for High Angular-Resolution Operation: A 98×98 Unit, 265GHz CMOS Reflectarray with In-Unit Digital Beam Shaping and Squint Correction

Advantages of a Bidirectional Phase Shifter

Tiled Chips for Scalable Architecture

- Single chip with 7x7 antennas
- Tile chips on PCB for large array
 - Wirebond stitching
 - Antenna spacing maintained

Scalable architecture

- Arbitrary array sizes
- Individual chip addressing
 - Robust architecture
 - Bypass defects

. . .

In-Unit Memory for Phase Control

- 80kb memory per antenna
 - Shift register
- Phases pre-computed
 - Pre-loaded at startup
- Master clock cycles array
- Addresses digital bandwidth issues
- Enables performance enhancing algorithms

265GHz Reflectarray Die Photo

Intel 22nm FinFET

98 × 98 Antenna Reflectarray

Intel 22nm FinFET

98 × 98 Antenna Reflectarray

Intel 22nm FinFET

Assembled Reflectarray

- 265GHz VDI source
- Custom CNC WR3.4 feed
 - 5.8cm feed distance

Testbench

- Motorized rotation stage
 - 0.25° steps
- Static receiver at 1.6m
 - VDI WR3.4 SHM
- E-plane/H-plane cuts

Measured Radiation Patterns

Measured Radiation Patterns

Measured Radiation Patterns

Measured/Simulated Radiation

Beam Shaping: Squint Correction

Required phases change during FMCW chirp

- Beam squint reduces resolution
- Use memory to update phases during chirp

Beam Shaping: Sidelobe Reduction

- Time varying offset added before quantization³

 - Mainlobe phase offset is de-embedded at receiver
 - Needs fast change in antenna phases → enabled by memory

Beam Shaping: Sidelobe Reduction

Quantized Phases

Beam Shaping: Sidelobe Reduction Simulated 2d pattern

© 2022 IEEE International Solid-State Circuits Conference

Beam Shaping: Sidelobe Reduction Simulated 2d pattern

© 2022 IEEE International Solid-State Circuits Conference

Imaging Radar Demo

- Raster FMCW beam across scene
- Depth samples at each point
- Process IF into radar image

Parameter	Value		
Chirp rate (MHz/µs)	62.5		
Transmit Power (dBm)	20		
Transmit Bandwidth (GHz)	1.92		
Frequency (GHz)	263~265		
Range Resolution (cm)	7.8		
Pixel Integration Time (ms)	15		

Performance Comparison

	Freq. (GHz)	Beam Forming Approach	Array Size	3dB Beam- width	Steering Range	Automatic Beam Profile Correction?	Technology	Area	Power Consumption	3D Sensing Demo?
ISSCC 2021 [1]	380	Active-Driven Beam Squint Antenna	2x1	~15° (1)	±40°	No	65nm CMOS	3mm ²	0.14W (TX) 0.16 (RX)	
ISSCC 2021 [2]	450	Active Reconfigurable Array+Si Lens	3x7	~7° (2)	±28° & ±8°	No	65nm CMOS	4mm ²	0.051~0.095W	
SPIE 2019 [3]	235	Reflect Array (Tiled GaN Chips)	32x32 ⁽³⁾	~3°	> ±40°	No	GaN + Silicon Micromachining	31mm² (Chip) 500mm² (Array)	NA	INA
Nat. E. 2020 [4]	300	Transmit Array (Tiled CMOS Chips)	24x24	~10° (4)	±30°	No	65nm CMOS	4mm² (Chip) 16mm² (Array)	0.025W ⁽⁵⁾ (f _{clk} =5GHz)	
This Work	260	Reflect Array ⁽⁶⁾ (Tiled CMOS Chips)	98x98	1°	> ±60°	Yes	22nm CMOS	16mm ² (Chip) 3100mm ² (Array)	0.85W ⁽⁷⁾ (f _{clk} =100kHz)	Yes
(1) Achieved only in one dimension. (2) Achieved through a Si lens (R=5mm). (3) ~50% of array units not functioning										
(4) Estimated from the simulated value (5) Dynamic power driving phase shifter switches. (6) The only all-inclusive solution requiring no external data										
control during beam scanning (7) Dynamic power driving 98x98x2 phase shifter switches and 780Mb built-in cyclic memory										

Conclusion

- Towards high angular resolution THz antenna arrays
 - Reflectarray architecture
 - 1 bit passive phase shifter design
 - Scalable architecture
 - Local memory

- Demonstrated electronically steered 1° beam over 120° window in 2D
- Digital Beam Shaping via local memory
 Solid state 3D THz radar imaging

Acknowledgements

Intel Corporation

• University Shuttle, SRS Program

• Greg Wornell, Jeffrey Lang, Xiang Yi, Zhi Hu, Mohamed Ibrahim, Muhammad Ibrahim Khan

Thomas Keating

• THz absorbing materials

Thank You

[1] J. Lynch, et al. "Coded aperture subreflector array for high resolution radar imaging". SPIE. 2019.

[2] S. Venkatesh, et al. "A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips". Nature Electronics, pp.785-793, Dec. 2020.

[3] H. Kamoda, et al., "Experimental Verification of Novel Method to Reduce Quantization Lobes for Phased Array Radar", EuRAD, pp. 337-340, 2012.

[4] Saeidi, et al, "THz prism: one-shot simultaneous multinode angular localization using spectrum-to-space mapping with 360-to-400GHz broadband transceiver and dual-port integrated leaky-wave antennas", ISSCC, pp. 314-325, 2021.

[5] H. Jalili, et al. "A 436-to-467GHz lens-integrated reconfigurable radiating source with continuous 2D steering and multi-beam operations in 65nm CMOS", ISSCC, pp. 326-327, 2021.