4.3: A 140GHz Transceiver with Integrated Antenna, Inherent-Low-Loss Duplexing and Adaptive Self-Interference Cancellation for FMCW Monostatic Radar

<u>Xibi Chen</u>¹, Muhammad Ibrahim Wasiq Khan¹, Xiang Yi^{1,2}, Xingcun Li^{1,3}, Wenhua Chen³, Jianfeng Zhu⁴, Yang Yang⁴, Kenneth E. Kolodziej⁵, Nathan M. Monroe¹, Ruonan Han¹

¹Massachusetts Institute of Technology, Cambridge, MA
²South China University of Technology, Guangzhou, China
³Tsinghua University, Beijing, China
⁴University of Technology Sydney, Ultimo, Australia
⁵MIT Lincoln Laboratory, Lexington, MA

Massachusetts

Technoloav

Self Introduction

■ Currently at EECS, MIT

■ M.S. Degree, EE, Tsinghua University

■ B.S. Degree, EE, Tsinghua University

Research Interests:

- THz integrated electronic systems
- THz imaging/sensing
- CMOS electromagnetics/optics

Introduction

140GHz Transceiver Chip Design

- Operation Principle
- Integrated Antenna
- Adaptive Self-Interference Cancellation (SIC)
- System Architecture and Functional Circuits
- Measurement Results

Introduction

140GHz Transceiver Chip Design

- Operation Principle
- Integrated Antenna
- Adaptive Self-Interference Cancellation (SIC)
- System Architecture and Functional Circuits
- Measurement Results

Sub-THz Radars

Bistatic Radars: Problem

30 Gain in dBi 20 Realized -20 Tx Antenna with lens -Rx Antenna with lens

Angle in deg

50

xz-plane @ 122 GHz with 35mm lens (F=15mm)

- High TX-RX isolation
- Severe TX-RX beam misalignment under highangular resolution (i.e. large aperture) applications.

-30

-50

Monostatic Radars: Current Solutions

Introduction

140GHz Transceiver Chip Design

- Operation Principle
- Integrated Antenna
- Adaptive Self-Interference Cancellation (SIC)
- System Architecture and Functional Circuits
- Measurement Results

Circular Polarization (CP) Will Tell

© 2022 IEEE International Solid-State Circuits Conference

Full-Duplexing By Geometrical Symmetry

© 2022 IEEE International Solid-State Circuits Conference

Introduction

140GHz Transceiver Chip Design

- Operation Principle
- Integrated Antenna
- Adaptive Self-Interference Cancellation (SIC)
- System Architecture and Functional Circuits
- Measurement Results

Integrated Hollow Turnstile Antenna

© 2022 IEEE International Solid-State Circuits Conference

4.3: A 140GHz Transceiver with Integrated Antenna, Inherent-Low-Loss Duplexing and Adaptive Self-Interference Cancellation for FMCW Monostatic Radar

12 of 36

Antenna Mismatch: Dynamic Leakage

Introduction

140GHz Transceiver Chip Design

- Operation Principle
- Integrated Antenna
- Adaptive Self-Interference Cancellation (SIC)
- System Architecture and Functional Circuits
- Measurement Results

Adaptive SIC Scheme: Observation

© 2022 IEEE International Solid-State Circuits Conference

15 of 36

Adaptive SIC Scheme: Principle

Adaptive SIC Scheme: Behavior

International Solid-State Circuits Conference

4.3: A 140GHz Transceiver with Integrated Antenna, Inherent-Low-Loss Duplexing and Adaptive Self-Interference Cancellation for FMCW Monostatic Radar

Introduction

140GHz Transceiver Chip Design

- Operation Principle
- Integrated Antenna
- Adaptive Self-Interference Cancellation (SIC)
- System Architecture and Functional Circuits
- Measurement Results

```
System Architecture
```


RX Circuits

TX Circuits

Simulated TX power >11dBm over 18GHz bandwidth.

Introduction

140GHz Transceiver Chip Design

- Operation Principle
- Integrated Antenna
- Adaptive Self-Interference Cancellation (SIC)
- System Architecture and Functional Circuits

Measurement Results

Chip Micrograph and Assembly

Chip Assembly

© 2022 IEEE International Solid-State Circuits Conference

TX Test Setups

© 2022 IEEE International Solid-State Circuits Conference

TX Measurement Results

RX Test Setup and Measurement Results

International Solid-State Circuits Conference

26 of 36

FMCW Tests

140GHz Radar Detection System Setup

Object Detection

© 2022 IEEE International Solid-State Circuits Conference

SIC Performance

Range-Doppler Detection*

© 2022 IEEE International Solid-State Circuits Conference

Introduction

140GHz Transceiver Chip Design

- Operation Principle
- Integrated Antenna
- Adaptive Self-Interference Cancellation (SIC)
- System Architecture and Functional Circuits
- Measurement Results

Comparison with Other Monostatic Radars

References	This Work	JSSC 2021 [2]	T-THz 2016 [3]	T-MTT 2017 [4]	ISSCC 2020 [5]	T-MTT 2018 [6]
Technology	65nm CMOS	130nm SiGe	130nm SiGe	130nm CMOS	65nm CMOS	130nm SiGe
Frequency (GHz)	134~148	160~178	210~270	23.8~24.5	80~85	150~170
Inherent 6dB Coupler Loss?	No	Yes	No	Yes	Yes	Yes
EIRP (dBm)	9.8, 25.2 ^(a)	8	32.8 ^(e)	N/A	17 ^(g)	32 ⁽ⁱ⁾
TX Power (dBm)	11.2 ^(b)	3	N/A	-1.6	2	3
Total Radiated Power (dBm)	6.2	N/A	5	N/A	N/A	N/A
RX NF _{min} (dB)	12.9	15.5	~19	11.6	15	20
Adaptive SIC	Yes	No	No	No	Yes	No
Isolation (dB)	33.3 ^(c)	25	26	47.3 ^(f)	40 ^(h)	17
Antenna Type	On-Chip	On-Chip	On-Chip	Off-Chip	Off-Chip	Off-Chip
Radiation Direction & Antenna Feature	Front-Side with	Back-Side	Back-Side	Horn Antenna	4×8 Patch Antenna Array	Dielectric
	3D-Printed Planar	with Substrate	with Silicon			Resonator
	Lens	Etching ^(d)	Lens			Antenna
Die Area (mm ²)	3.1	5.4	3.2	1.5	1	1.9
DC Power (mW)	405	860	1600~2000	111	120	N/A
(a) with 3D-printed lens	(b) assuming 32% simulated antenna efficiency			(c) under 14GHz-wide FMCW chirping		

(d) localized backside etching (e) with silicon lens (f) achieved in a narrowband by manual impedance tuning

(g) with off-chip 4×8 patch antenna array (h) reported in a narrowband measurement

(i) with off-chip dielectric-resonator antenna

© 2022 IEEE International Solid-State Circuits Conference

32 of 36

- 140GHz FMCW monostatic radar transceiver chip
- Full-duplexing based on geometrical symmetry
- Adaptive SIC feedback loop to compensate the antenna mismatch
- >30dB isolation w/o inherent 6dB coupler loss
- Integrated antenna, front-side radiation, with 3D-printed planar lens
- Highest total radiated power

Acknowledgement

We would like to thank Virginia Diodes Inc. (VDI) for the support of test instruments.

Major References

[1] M. Pauli et al., "Miniaturized Millimeter Wave Radar Sensor for High Accuracy Applications," *IEEE T-MTT*, vol. 65, no. 5, pp. 1707–1715, 2017.

[2] M. Kucharski et al., "Monostatic and Bistatic G-Band BiCMOS Radar Transceivers With On-Chip Antennas and Tunable TX to RX Leakage Cancellation," *IEEE JSSC*, vol. 56, no. 3, pp. 899–913, 2021.

[3] J. Grzyb et al., "A 210–270GHz Circularly Polarized FMCW Radar With a Single Lens Coupled SiGe HBT Chip," *IEEE Trans. THz Sci. & Technol.*, vol. 6, no. 6, pp. 771–783, 2016.

[4] G. Pyo et al., "Single Antenna FMCW Radar CMOS Transceiver IC," *IEEE T-MTT*, vol. 65, no. 3, pp. 945–954, 2017.

[5] M. Kalantari et al., "A Single Antenna W-Band FMCW Radar Front End Utilizing Adaptive Leakage Cancellation," *ISSCC*, pp. 88–90, 2020.

[6] M. Hitzler et al., "On Monostatic and Bistatic System Concepts for mmWave Radar MMICs," *IEEE T-MTT*, vol. 66, no. 9, pp. 4204–4215, 2018.

35 of 36

4.3: A 140GHz Transceiver with Integrated Antenna, Inherent-Low-Loss Duplexing and Adaptive Self-Interference Cancellation for FMCW Monostatic Radar

<u>Xibi Chen</u>¹, Muhammad Ibrahim Wasiq Khan¹, Xiang Yi^{1,2}, Xingcun Li^{1,3}, Wenhua Chen³, Jianfeng Zhu⁴, Yang Yang⁴, Kenneth E. Kolodziej⁵, Nathan M. Monroe¹, Ruonan Han¹

¹Massachusetts Institute of Technology, Cambridge, MA
 ²South China University of Technology, Guangzhou, China
 ³Tsinghua University, Beijing, China
 ⁴University of Technology Sydney, Ultimo, Australia
 ⁵MIT Lincoln Laboratory, Lexington, MA

Massachusetts

Technoloav

36 of 36