



#### RMo3A-1

## A Sub-THz CMOS Molecular Clock with 20 ppt Stability at 10,000 s Based on Dual-Loop Spectroscopic Detection and Digital Frequency Error Integration

M. Kim<sup>1</sup>, C. Wang<sup>1</sup>, L. Yi<sup>2</sup>, H.-S. Lee<sup>1</sup>, and R. Han<sup>1</sup>

<sup>1</sup>Massachusetts Institute of Technology, Cambridge, USA <sup>2</sup>Jet Propulsion Laboratory, California Institute of Technology, USA







#### Outline



- Motivation and Background
- Prior Arts
- Proposed Chip-Scale Molecular Clock
- Measurement Results
- Conclusions







#### Motivation

 Highly-stable frequency reference (i.e. clock) is one of the key technologies for a wide range of applications



• Chip-scale molecular clocks provide high stability at low cost by using rotational spectrum of molecules in sub-THz range.

|                                         | Stability                           | Cost     | Power  |
|-----------------------------------------|-------------------------------------|----------|--------|
| Crystal/MEMS Oscillators                | 10 <sup>-4</sup> - 10 <sup>-8</sup> | < \$1    | ~ 1mW  |
| Oven-Controlled Crystal/MEMS Osillators | ~ 10 <sup>-10</sup>                 | ~ \$100  | ~1W    |
| Chip-Scale Atomic Clocks (CSACs)        | ~ 10-11                             | > \$1000 | ~100mW |
| Chip-Scale Atomic Clocks (CSMCs)        | ~ 10-11                             | ~ \$10   | ~100mW |

3





#### Sub-THz Molecular Clock



4

- Narrow transition line of carbonyl sulfide (OCS) at  $f_0 = 231.061$  GHz
- High stability against environmental variations
- $f_{CLK}$  inherits the stability of OCS absorption line since  $f_c$  is locked to  $f_0$





#### **Spectral Curves and Frequency Locking**

#### Nth-Order Harmonic Spectral Curves



5







#### Prior Chip-Scale Molecular Clock (CSMC)

• 3rd-order detection was used for locking

SOLID-STATE

•  $\sigma_v = 3.2 \times 10^{-10}$  @ T = 1s,  $\sigma_v = 4.3 \times 10^{-11}$  @ T =  $10^3$ s







- Long-term stability is limited by the finite loop gain
- Large amplifier gain ( $K_{amp}$ ) is required to suppress the effect of  $V_{offset}$  variations, but  $K_{amp}$  is limited due to high even-harmonic components
- Lower SNR in high-order detection due to smaller K<sub>r</sub>



### **Problems in Prior CSMCs**

 Theoretical stability limit of highorder locking is higher than fundamental locking

RFI

- Molecular regulation is not provided for τ < 20 s</li>
- Long-term variation and temperature sensitivity of VCXO affects the clock's long-term stability (XO Pulling)



#### Averaging Time, au





#### **Proposed Chip-Scale Molecular Clock**

**Proposed Architecture** 

RMo3A-1



- High SNR from fundamental-mode probing (in the main loop)
- Low long-term drift from high-order probing (in the auxiliary loop)

9





#### **Proposed Architecture**





SOLID-STATE

MTT-S IEEE MICROWAVE THEORY &

 $\lambda \gamma \lambda$ 



### Transmitter (TX) Architecture



- Two PLLs are cascaded
- 36-bit DSMs are used

RFIC

• Sine modulation with modulation frequency of  $f_m$  is applied in PLL2



#### Transmitter (TX) Architecture



- Simulated THz power of the quadrupler output = -4.4dBm
- Simulated loss of the SAC = 5.2 dB

RFIC

## RFIC

### Transmitter (TX) Architecture



- Sine modulator generates  $40f_m$ ,  $3f_m$ , and  $f_m$  clocks and 8-bit sine wave
- *f*<sub>m</sub> = 111 kHz



## RFIC

### **Receiver (RX) Architecture**



- Fundamental detection's output controls the VCXO (main loop)
- 3<sup>rd</sup> harmonic signal is followed by a comparator and a digital integrator and its output controls the frequency control word of the PLL1. (auxiliary loop)

14





### **Receiver (RX) Architecture**







### **Receiver (RX) Architecture**



- Even harmonic components have large amplitude and can limit K<sub>amp</sub>
- Notch filters are used to reject the signal at  $2f_m$ ,  $4f_m$ , ...





### **Receiver (RX) Architecture**



- Even harmonic components have large amplitude and can limit  $K_{amp}$
- Notch filters are used to reject the signal at  $2f_m$ ,  $4f_m$ , ...
- 20-phase non-overlapping clock signals generated by a pulse generator drive the switches in notch filters



#### Chip Micrograph and Packaging





SOLID-STATE



# RFIC

#### Measurement Results: TX/RX Performance



19





*PN*<sub>RF</sub> @ 2*f*<sub>m</sub> : -65 dBc/Hz, *PN*<sub>CKOUT</sub> @ 1 MHz :-129 dBc/Hz



#### **Measurement Results: Spectral Curves**



 $K_r = 8.26 \times 10^{-8}$  V/Hz for fundamental probing •  $K_r = 4.51 \times 10^{-8}$  V/Hz for 3<sup>rd</sup>-order probing

21





22





• Average temperature coefficient: 5.8×10<sup>-10</sup> °C<sup>-1</sup> without temperature compensation





#### **Performance Summary**

[1] C. Wang, JSSC, 2019 [2] C. Wang, JSCC, 2021 [3] D. Ruffieux, ISSCC, 2011 [4] H. Zhang, ISSCC, 2019 [5] Microsemi, SA.45s, 2019

RMo3A-1

|                              |                             | [3]                                                           | [4]                                                                                                   | [5]                                                                                         | [1]                                 | [2]                                   | This Work                               |  |
|------------------------------|-----------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------|-----------------------------------------|--|
| Implementation               |                             | 0.18 µm<br>CMOS +<br>Vapor Cell w/<br>Integrated<br>Photonics | Discrete<br>Electronics + Vapor<br>Cell w/ Integrated<br>Photonics and<br>Heater + Magnetic<br>Shield | 65 nm CMOS +<br>Vapor Cell w/<br>Integrated<br>Photonics and<br>Heater +<br>Magnetic Shield | 65 nm CMOS Chip + Sub-THz Waveguide |                                       |                                         |  |
| Frequency                    |                             | Ground-Sta                                                    | Ground-State Hyperfine Transition of Atoms                                                            |                                                                                             |                                     | Rotational Transition of Molecules    |                                         |  |
| Reference                    |                             | <sup>87</sup> Rb                                              | 133 <b>(</b>                                                                                          | Ś                                                                                           | 16012C32S                           |                                       |                                         |  |
| Probing Freq.                |                             | 3.417 GHz                                                     | 4.596                                                                                                 | GHz                                                                                         | 231.061 GHz                         |                                       |                                         |  |
| Order of Locking             |                             | N/A                                                           |                                                                                                       |                                                                                             | 1 <sup>st</sup>                     | 3 <sup>rd</sup>                       | 1 <sup>st</sup> + 3 <sup>rd</sup>       |  |
| ADEV<br>(10 <sup>-10</sup> ) | <i>т</i> =1s                | 4                                                             | 0.67                                                                                                  | 3                                                                                           | 24                                  | 3.2(Unlocked)                         | 5.4                                     |  |
|                              | <i>т</i> =10s               | 1.2                                                           | 0.6                                                                                                   | 1                                                                                           | 8.6                                 | 5.4                                   | 2.4                                     |  |
|                              | <i>т</i> =10 <sup>4</sup> s | 2(@ <b>7=</b> 400s)                                           | 0.05                                                                                                  | N/A                                                                                         | N/A                                 | 0.88                                  | 0.2                                     |  |
| Avg. Temp. Coeff.†           |                             | N/A                                                           | 0.07×10 <sup>10</sup> /°C                                                                             | 0.13×10 <sup>10</sup> /°C                                                                   | N/A                                 | 28×10 <sup>10</sup> /°C <sup>++</sup> | 5.8×10 <sup>-10</sup> /°C <sup>++</sup> |  |
| DC Power                     |                             | 26 <sup>‡</sup>                                               | 60                                                                                                    | 120                                                                                         | 66                                  | 70                                    | 71                                      |  |

<sup>†</sup>Defined as (Temperature-induced frequency drift)/(Temperature range), <sup>††</sup>w/o temp. compensation, <sup>‡</sup>The power of the physics package and signal processing is not included.





#### **Performance Summary**

[1] C. Wang, JSSC, 2019 [2] C. Wang, JSCC, 2021 [3] D. Ruffieux, JSSCC, 2011 [4] H. Zhang, JSSCC, 2019 [5] Microsemi, SA.45s, 2019

RMo3A-1

|                              |                             | [3]                                                           | [4]                                                                                                   | [5]                                                                                         | [1]                                             | [2]                                   | This Work                              |  |
|------------------------------|-----------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------|----------------------------------------|--|
| Implementation               |                             | 0.18 µm<br>CMOS +<br>Vapor Cell w/<br>Integrated<br>Photonics | Discrete<br>Electronics + Vapor<br>Cell w/ Integrated<br>Photonics and<br>Heater + Magnetic<br>Shield | 65 nm CMOS +<br>Vapor Cell w/<br>Integrated<br>Photonics and<br>Heater +<br>Magnetic Shield | 65 nm CMOS Chip + Sub-THz Waveguide             |                                       |                                        |  |
| Frequency                    |                             | Ground-Sta                                                    | Ground-State Hyperfine Transition of Atoms                                                            |                                                                                             |                                                 | Rotational Transition of Molecules    |                                        |  |
| Reference                    |                             | <sup>87</sup> Rb                                              | 133 <b>(</b>                                                                                          | Ś                                                                                           | <sup>16</sup> O <sup>12</sup> C <sup>32</sup> S |                                       |                                        |  |
| Probing Freq.                |                             | 3.417 GHz                                                     | 4.596                                                                                                 | GHz                                                                                         | 231.061 GHz                                     |                                       |                                        |  |
| Order of Locking             |                             | N/A                                                           |                                                                                                       |                                                                                             | 1 <sup>st</sup>                                 | 3 <sup>rd</sup>                       | 1 <sup>st</sup> + 3 <sup>rd</sup>      |  |
| ADEV<br>(10 <sup>-10</sup> ) | <i>т</i> =1s                | 4                                                             | 0.67                                                                                                  | 3                                                                                           | 24                                              | 3.2(Unlocked)                         | 5.4                                    |  |
|                              | <i>т</i> =10s               | 1.2                                                           | 0.6                                                                                                   | 1                                                                                           | 8.6                                             | 5.4                                   | 2.4                                    |  |
|                              | <i>т</i> =10 <sup>4</sup> s | 2(@ <b>7=</b> 400s)                                           | 0.05                                                                                                  | N/A                                                                                         | N/A                                             | 0.88                                  | 0.2                                    |  |
| Avg. Temp. Coeff.†           |                             | N/A                                                           | 0.07×10 <sup>-10</sup> /°C                                                                            | 0.13×10 <sup>10</sup> /°C                                                                   | N/A                                             | 28×10 <sup>10</sup> /°C <sup>++</sup> | 5.8×10 <sup>10</sup> /°C <sup>††</sup> |  |
| DC Power                     |                             | 26 <sup>‡</sup>                                               | 60                                                                                                    | 120                                                                                         | 66                                              | 70                                    | 71                                     |  |

<sup>†</sup>Defined as (Temperature-induced frequency drift)/(Temperature range), <sup>††</sup>w/o temp. compensation, <sup>‡</sup>The power of the physics package and signal processing is not included.

25





#### **Performance Summary**

[1] C. Wang, JSSC, 2019 [2] C. Wang, JSCC, 2021 [3] D. Ruffieux, JSSCC, 2011 [4] H. Zhang, JSSCC, 2019 [5] Microsemi, SA.45s, 2019

RMo3A-1

|                              |                             | [3]                                                           | [4]                                                                                                   | [5]                                                                                         | [1]                                             | [2]                                    | This Work                               |  |
|------------------------------|-----------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------|-----------------------------------------|--|
| Implementation               |                             | 0.18 µm<br>CMOS +<br>Vapor Cell w/<br>Integrated<br>Photonics | Discrete<br>Electronics + Vapor<br>Cell w/ Integrated<br>Photonics and<br>Heater + Magnetic<br>Shield | 65 nm CMOS +<br>Vapor Cell w/<br>Integrated<br>Photonics and<br>Heater +<br>Magnetic Shield | 65 nm CMOS Chip + Sub-THz Waveguide             |                                        |                                         |  |
| Frequency                    |                             | Ground-State Hyperfine Transition of Atoms                    |                                                                                                       |                                                                                             | Rotational Transition of Molecules              |                                        |                                         |  |
| Reference                    |                             | <sup>87</sup> Rb                                              | 1330                                                                                                  | Ś                                                                                           | <sup>16</sup> O <sup>12</sup> C <sup>32</sup> S |                                        |                                         |  |
| Probing Freq.                |                             | 3.417 GHz                                                     | 4.596                                                                                                 | GHz                                                                                         | 231.061 GHz                                     |                                        |                                         |  |
| Order of Locking             |                             | N/A                                                           |                                                                                                       |                                                                                             | 1 <sup>st</sup>                                 | 3 <sup>rd</sup>                        | 1 <sup>st</sup> + 3 <sup>rd</sup>       |  |
| ADEV<br>(10 <sup>-10</sup> ) | <i>т</i> =1s                | 4                                                             | 0.67                                                                                                  | 3                                                                                           | 24                                              | 3.2(Unlocked)                          | 5.4                                     |  |
|                              | <i>т</i> =10s               | 1.2                                                           | 0.6                                                                                                   | 1                                                                                           | 8.6                                             | 5.4                                    | 2.4                                     |  |
|                              | <i>т</i> =10 <sup>4</sup> s | 2(@ <b>7=</b> 400s)                                           | 0.05                                                                                                  | N/A                                                                                         | N/A                                             | 0.88                                   | 0.2                                     |  |
| Avg. Temp. Coeff.†           |                             | N/A                                                           | 0.07×10 <sup>10</sup> /°C                                                                             | 0.13×10 <sup>-10</sup> /°C                                                                  | N/A                                             | 28×10 <sup>-10</sup> /°C <sup>++</sup> | 5.8×10 <sup>-10</sup> /°C <sup>++</sup> |  |
| DC Power                     |                             | 26 <sup>‡</sup>                                               | 60                                                                                                    | 120                                                                                         | 66                                              | 70                                     | 71                                      |  |

<sup>†</sup>Defined as (Temperature-induced frequency drift)/(Temperature range), <sup>††</sup>w/o temp. compensation, <sup>‡</sup>The power of the physics package and signal processing is not included.





#### Conclusions

- CSMC can provide high stability at low cost
- Dual-loop CSMC improves Allan Deviation by combining high SNR of fundamental transition probing and environmental robustness of high-order transition probing.
- Digital integration in the frequency-locked loop provides high gain.
- Without temperature compensation, Allan Deviation of  $\sigma_y = 2 \times 10^{-10}$

<sup>11</sup> @  $\tau$  = 10<sup>4</sup> s was achieved.





#### Acknowledgement

- This work is supported by JPL and NSF.
  - The authors acknowledge Dr. Stephen Coy, Prof. Keith Nelson, and Prof. Robert Field of MIT for technical discussions and assistance.









### **Thank You**







