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• Highly-stable frequency reference (i.e. clock) is one of the key technologies for 
a wide range of applications

• Chip-scale molecular clocks provide high stability at low cost by using 
rotational spectrum of molecules in sub-THz range. 

Motivation

Communication 
Network Underwater SensingNavigation

Stability Cost Power
Crystal/MEMS Oscillators 10-4 – 10-8 < $1 ~ 1mW

Oven-Controlled Crystal/MEMS Osillators ~ 10-10 ~ $100 ~1W
Chip-Scale Atomic Clocks (CSACs) ~ 10-11 > $1000 ~100mW
Chip-Scale Atomic Clocks (CSMCs) ~ 10-11 ~ $10 ~100mW
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Sub-THz Molecular Clock

PLL
fCLK

Square-Law
Detector

Voltage-Controlled 
Crystal Oscillator (VCXO)

Sealed OCS Gas 
in Waveguide

• Narrow transition line of carbonyl sulfide (OCS) at f0 = 231.061 GHz  
• High stability against environmental variations
• fCLK inherits the stability of OCS absorption line since fc is locked to f0

fm

LPF Variable Gain
Amplifier (VGA)

N · fm 

fc + ∆f sin(2πfmt) 
= M · fCLK + ∆f sin(2πfmt)

Venv

Lock-In 
Detector≈2×105

Q =
f0
fFWHM
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Spectral Curves and Frequency Locking
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• 3rd-order detection was used for locking
• σy = 3.2×10-10 @ τ = 1s, σy = 4.3×10-11 @ τ = 103s

Prior Chip-Scale Molecular Clock (CSMC)

[C. Wang, JSSC, 2021]
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Problems in Prior CSMCs
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• Long-term stability is limited by the finite loop gain
• Large amplifier gain (Kamp) is required to suppress the effect of Voffset variations, 

but Kamp is limited due to high even-harmonic components
• Lower SNR in high-order detection due to smaller Kr 
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Problems in Prior CSMCs
• Theoretical stability limit of high-

order locking is higher than 
fundamental locking

• Molecular regulation is not provided 
for τ < 20 s

• Long-term variation and 
temperature sensitivity of VCXO 
affects the clock’s long-term stability 
(XO Pulling)
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Proposed Chip-Scale Molecular Clock

• High SNR from fundamental-mode probing (in the main loop) 
• Low long-term drift from high-order probing (in the auxiliary loop)

Prior Architecture

Proposed Architecture
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Proposed Architecture
Timing Diagram
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• Two PLLs are cascaded
• 36-bit DSMs are used
• Sine modulation with modulation frequency of fm is applied in PLL2

Transmitter (TX) Architecture
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Transmitter (TX) Architecture

• Simulated THz power of the quadrupler output = -4.4dBm
• Simulated loss of the SAC = 5.2 dB

Freq. Quadrupler Slot Array Coupler (SAC)
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Transmitter (TX) Architecture

• Sine modulator generates 40fm, 3fm, and fm clocks and 8-bit sine wave
• fm = 111 kHz
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Receiver (RX) Architecture

• Fundamental detection’s output controls the VCXO (main loop)
• 3rd harmonic signal is followed by a comparator and a digital integrator and 

its output controls the frequency control word of the PLL1. (auxiliary loop)
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Receiver (RX) Architecture

• Sub-threshold NMOS pair is used as a low 
noise THz square-law detector

Square-Law Detector
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Receiver (RX) Architecture
Transmission

fc–f0

2nd Harmonic Component

• Even harmonic components have large amplitude and can limit Kamp

• Notch filters are used to reject the signal at 2fm , 4fm, …
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Receiver (RX) Architecture

• Even harmonic components have large amplitude and can limit Kamp

• Notch filters are used to reject the signal at 2fm , 4fm, …
• 20-phase non-overlapping clock signals generated by a pulse generator drive 

the switches in notch filters

20-Path Notch Filter
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• Technology: TSMC 65 nm CMOS (GP)
• Area:  4000 µm × 1250 µm

Chip Micrograph and Packaging
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Measurement Results: TX/RX Performance
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• PRF= –9.7 dBm • NEP of RX @ fm = 21.4 pW/Hz1/2

*After de-embedding 
5-dB loss of SAC 
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Measurement Results: Phase Noise
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• PNRF @ 2fm : –65 dBc/Hz, PNCKOUT @ 1 MHz :–129 dBc/Hz
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• Kr = 8.26×10-8 V/Hz for fundamental probing 

Measurement Results: Spectral Curves
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• Kr = 4.51×10-8 V/Hz for 3rd-order probing
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• σy = 5.4×10-10@τ=1s  
• σy = 0.2×10-10@τ=104s 
• The proposed CSMC is 

robust against rapid 
environmental 
disturbances

• This work achieves high 
stability in both short-
term and long-term

Measurement Results: Allan Deviation

100 101 102 103 104

Averaging Time,  (s)

10-11

10-10

10-9

10-8

10-7

A
lla

n 
D

ev
ia

tio
n

Free-Running XO
CSMC [1]
CSMC [2]
This Work



23 RMo3A-1

Measurement Results: Allan Deviation
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• Average temperature coefficient: 5.8×10-10 ºC-1 without temperature compensation

*High-cost implementation
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Performance Summary
[3] [4] [5] [1] [2] This Work

Implementation

0.18 µm 
CMOS + 

Vapor Cell w/ 
Integrated 
Photonics

Discrete 
Electronics + Vapor 
Cell w/ Integrated 

Photonics and 
Heater + Magnetic 

Shield

65 nm CMOS + 
Vapor Cell w/ 

Integrated 
Photonics and 

Heater + 
Magnetic Shield

65 nm CMOS Chip + Sub-THz Waveguide

Frequency 
Reference

Ground-State Hyperfine Transition of Atoms Rotational Transition of Molecules
87Rb 133Cs 16O12C32S

Probing Freq. 3.417 GHz 4.596 GHz 231.061 GHz
Order of Locking N/A 1st 3rd 1st + 3rd

ADEV
(10-10)

τ=1s 4 0.67 3 24 3.2(Unlocked) 5.4
τ=10s 1.2 0.6 1 8.6 5.4 2.4
τ=104s 2(@τ=400s) 0.05 N/A N/A 0.88 0.2

Avg. Temp. Coeff.† N/A 0.07×10-10/ºC 0.13×10-10/ºC N/A 28×10-10/ºC†† 5.8×10-10/ºC††

DC Power 26‡ 60 120 66 70 71
†Defined as (Temperature-induced frequency drift)/(Temperature range), ††w/o temp. compensation,
‡The power of the physics package and signal processing is not included.

[1] C. Wang, JSSC, 2019 [2] C. Wang, JSCC, 2021 [3] D. Ruffieux, 
ISSCC, 2011 [4] H. Zhang, ISSCC, 2019 [5] Microsemi, SA.45s, 2019
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• CSMC can provide high stability at low cost

• Dual-loop CSMC improves Allan Deviation by combining high SNR 

of fundamental transition probing and environmental robustness 

of high-order transition probing. 

• Digital integration in the frequency-locked loop provides high gain.

• Without temperature compensation, Allan Deviation of σy = 2×10-

11 @ τ = 104 s was achieved.

Conclusions
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