

BA759-315

A Dual-Antenna, 263-GHz Energy Harvester in CMOS for Ultra-Miniaturized Platforms with 13.6% RF-to-DC Conversion Efficiency at -8dBm Input Power

Muhammad Ibrahim Wasiq Khan, Eunseok Lee, Nathan M. Monroe, Anantha P. Chandrakasan, Ruonan Han

Massachusetts Institute of Technology

- Motivation & Applications
- Challenges
- THz Energy Harvester Design
 - Optimum Conditions for THz Rectifier
 - Proposed Design of THz Rectifier
- Measurement Results
- Conclusion & Comparison
- Future work: True THz-ID

Applications

Ultra-miniaturized platforms are powered by light or ultrasound

Micro-robots [L. Xu, et al., *I*SSCC 2022]

OLID-STATE

Microscopic Sensors [J. Alejandro, et al., *PNAS* 2020]

3

Microscopic Implants [J. Marcus, et al., JSSC 2018]

Applications: THz-ID

4

TSMC 65nm CMOS Process

MTT-S

IEEE Solid-State <u>Circuit</u>s Society [ISSCC 2020, JSSC 2020]

THz Energy Harvesting: Challenges 1. Device $f_t < 260$ GHz 2. Lack of high power source 20 15 Received Power (dBm) 10 5 0 200GHz -5 P_r= -8dBm -10 [F. Ellinger, et al., IEEE MTT-S 2011] -15 350 250 180 130 90 65 45 28 10 9 10 1 Node in nm Distance (cm) **Received Power at 260GHz** $(P_t=20dBm, G_t=25dBi, G_r=2dBi)$

5

SOLID-STATE

- Motivation & Applications
- Challenges
- THz Energy Harvester Design
 - Optimum Conditions for THz Rectifier
 - Proposed Design of THz Rectifier
- Measurement Results
- Conclusion & Comparison
- Future work: True THz-ID

Conventional Switching Rectifier

MTT-S

SOLID-STATE

ITS SOCIETY

RFIC

High *f*_{in}, Low *P*_{in}

Step-by-Step Optimization

BA759-315

IEEE SOLID-STATE CIRCUITS SOCIETY"

SSCS

MTT-S

Step-by-Step Optimization

BA759-315

IEEE SOLID-STATE CIRCUITS SOCIETY"

MTT-S

Step-by-Step Optimization

Step 3: Pin Redistribution

BA759-315

Ary .

11

THz Energy Harvester Schematic

Conventional Topology

Proposed Topology

Dual-Antenna Architecture enables

- Separate control for $P_{D,RF}$ and $P_{G,RF}$ through antenna widths
- Independent phase tunning of $\angle v_{ds}$
- Simplified matching networks design

 $Z_{ANT,G}=Z_G^*$ and $Z_{ANT,D}=Z_D^*$ where $Z_G=v_{gs}/i_{gs}$ and $Z_D=v_{ds}/i_{ds}$ are active impedances under optimum conditions

12

Simulated Performance

Simulated conversion efficiency and output power including loss of vias and matching networks

- Motivation & Applications
- Challenges
- THz Energy Harvester Design
 - Optimum Conditions for THz Rectifier
 - Proposed Design of THz Rectifier
- Measurement Results
- Conclusion & Comparison
- Future work: True THz-ID

BA759-315

16

EEE SOLID-STATE

CUITS SOCIETY

Measured Performance and Chip Micrograph

17

Intel's 22nm FinFET Process

Measured angle sensitivity

SOLID-STATE

18

- Motivation & Applications
- Challenges
- THz Energy Harvester Design
 - Optimum Conditions for THz Rectifier
 - Proposed Design of THz Rectifier
- Measurement Results
- Conclusion & Comparison
- Future work: True THz-ID

Performance Comparison

19

SSCS

IEEE SOLID-STATE CIRCUITS SOCIETY

Comparison with mm-Wave Energy Harvesters

	CMOS Technology	Frequency (GHz)	Peak Efficiency η_{max}^{\dagger} and Related P_{in}	η at Reduced P_{in} (\leq 0dBm) $^{+}$	Area (mm²)
This work	22nm FinFET	263	13.6% at -8dBm	13.6% at -8dBm	0.57
T-MTT' 21 [1]	40nm Bulk	94	45.8% at 10dBm	5% at 0dBm*	0.08#
T-MTT' 19 [2]	65nm Bulk	94	24% at 16dBm	2% at 0dBm*	0.09#
		35	36.5% at 15dBm	10% at 0dBm*	0.12#
T-MTT' 16 [3]	40nm Bulk	60	32.8% at 5.7dBm	10% at -3dBm*	15600\$
T-MTT' 14 [4]	65nm Bulk	24	20% at 6.4dBm	2% at -3dBm*	0.27#
		35	18% at 6.6dBm	4% at 0dBm*	
		60	11% at 3dBm	6% at 0dBm*	
IMS' 17 [5]	65nm Bulk	89	21.5% at 12.7dBm	1% at OdBm*	0.12#
IMS' 14 [6]	65nm Bulk	94	10% at 4.5dBm	4% at -2.3dBm*	0.48#
RFIC' 13 [7]	65nm Bulk	71	8% at 5dBm	-	1.8#
[†] Without antenna loss *Estimated from the plots in the literature #Area without antenna		[1] P. He, et al., <i>IEEE MTT</i> 2021. [2] P. He, et al., <i>IEEE MTT</i> 2019. [3] M. Nariman, et al., <i>IEEE MTT</i> 2016.		[5] E. Shaulov, et al., <i>IEEE IMS</i> 2017. [6] N. Weissman, et al., <i>IEEE IMS</i> 2014. [7] H. Gao, et al., <i>IEEE RFIC</i> 2013.	

[7] H. Gao, et al., *IEEE RFIC* 2013.

BA759-315

^{\$}Area including a grid antenna

MTT-S

SÕLID-STATE ITS SOCIETY 20

[4] P. Burasa, et al., IEEE MTT 2014.

- Motivation & Applications
- Challenges
- THz Energy Harvester Design
 - Optimum Conditions for THz Rectifier
 - Proposed Design of THz Rectifier
- Measurement Results
- Conclusion & Comparison
- Future work: True THz-ID

True THz-ID and Chip Micrograph

22

Intel's 22nm FinFET Process

Schematic of True THz-ID

T-S

SOLID-STATE

ITS SOCIETY

Acknowledgment

This work is supported by National Science Foundation (NSF) (SpecEES ECCS-1824360).

• I would like to thank Intel's 22FFL university shuttle program for the chip fabrication.

23

Thank you!

